SPSS正交试验设计及其方差分析
试验优化设计,指在最优化思想的指导下,进行最优设计的一种优化方法,从不同的优良性出发,合理设计试验方案,有效控制试验干扰,科学处理试验数据,全面进行优化分析,直接实现优化目标。
正交试验设计是试验优化的常用技术,在农业试验、工业优化、商业优化等方面应用已久。主要优点是能在多试验条件中选出代表性强的少数试验方案,通过对这些少数试验方案结果的分析,从中找出最优方案或最佳生产工艺条件,并可以得到比试验结果本身给出的还要多的有关各因素的信息。
SPSS软件不仅具有包括数据管理、统计分析、图表分析、输出管理等在内的基本统计功能,而且用它处理正交试验设计中的数据程序简单,分析结果明了。
【实施正交试验设计的步骤】
1、明确试验目的,确定考核指标
明确通过正交试验想要解决什么问题,确定用来衡量试验效果的评价指标,并详细描述出评定该指标的原则标准、测定指标的方法重要信息。
2、挑因素,选水平
有依据的选择引起指标变化的影响因素,因素在试验中的各种状态称为因素的水平。尽量选择适用于人为控制的和调节的影响因素,最后列出因素水平表。
3、选择合适的正交表
在能够安排下试验因素和交互作用前提下,尽可能选用较小的正交表,以减少试验次数和成本的消耗。
4、进行表头设计
表头设计即将试验因素安排到所选正交表的各列中去的过程。正交表中的任意一列的位置是一样的,可以任意变换,因此不考虑交互作用的情况下可直接将所有因素安排在任意一列;如果考虑交互作用,则必须按照交互作用列表的规定进行配列;为避免混杂,那些主要因素重点考察的因素涉及交互作用较多的因素,应优先安排;特别注意,尽可能安排空列,用于反映试验误差,并以此作为衡量试验因素产生的效应是否可靠的标志。
5、排出试验方案
表头设计完成后,将所选正交表中各列的不同数字换成对应因素的相应水平,形成试验方案。试验方案中的试验号并不意味着实际进行试验的顺序,一般需同时进行,若条件不允许,为排除外界环境干扰,应使试验序号随机化。
6、开始试验,收取结果
按照随机化的试验顺序进行试验,记录结果必备分析。
7、试验结果的统计分析
正交设计的结果分析有两种,一种是极差分析法(直观分析法),只考虑因素间的影响,不考虑试验误差。另一种是方差分析法,是一种精细化分析方法,可采用spss完成。
【SPSS正交试验设计案例】
我们用正交试验的方法,对从中草药虎杖中提取白藜芦醇苷的工艺进行优化。
(1)明确目的,确定指标:这是工艺优化的案例,目的在于通过试验,寻求优选白藜芦醇苷的最佳提取条件,白藜芦醇苷提取的效果指标为白藜芦醇苷含量。
(2)挑因素,选水平:根据专业知识及参考文献知识,以及正交试验的特点,选定影响水提取法的3个因素,加水量、煎煮时间、煎煮次数,每个因素3个水平,列出因素水平表如下:
(3)选择正交表:此为3水平试验,并不考虑交互作用,有3个因素需要占据3列,预留一个空列作为误差的话,标准正交表L934是最合适的选择。
(4)表头设计:不考虑交互作用,因素可占据任意列。
(5)排出试验方案:方案及试验结果如下表,第六步省略。
(7)试验结果的方差分析:为考察试验的误差及精细效果,我们直接采用SPSS方差分析来对此试验进行结果分析。
A:方差分析的步骤
B:不考虑交互作用,只考察各因素的主效应
C:方差分析结果解读
由方差分析可知,影响因素中加水量和煎煮次数两个对提取白藜芦醇苷具有显著的影响,而煎煮时间这个因素对其的影响较小。3个因素的主次关系是:煎煮次数>加水量>煎煮时间。
D:影响因素的哪个水平最好?可以通过绘制出的图直观的看出,也可以通过邓肯氏检验来解答,这里我们仅列出直观图。
通过上图,我们可以非常直观的看出,从三个因素中选择最好的水平,得到最佳组合为A3B2C3,即加水量12,煎煮时间1.5小时,煎煮次数3次。
使用SPSS统计软件包对L9(34)正交试验结果进行数据处理,只要按正交表的设计格式输入实验数据,便可获得所需的统计结果。其操作方便,直观,快捷,结果准确,使研究工作事半功倍,此法也可用来处理其他正交试验的数据。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21