前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例。然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要求能够灵活控制影响因素和水平的个数,以及试验的次数。
正交设计招数虽只有一招,但却变化多端,有多重不同应用方式,无空白列重复正交设计就是其中的一个变式。
一
案例数据
某制药厂主要生产胃蛋白酶,为了提高生产效率,拟从生产工艺上进行优化改进,你被要求负责该项目。根据多年的生产经验,你认为影响生产效率的因素主要包括A水解温度,B水解时间,C加盐量,D烘房温度,根据目前现有的生产条件,这几个因素能调整的参数大概只有三个水平,以残留蛋白作为质量指标,你决定通过正交试验来解决当前的问题。
数据来源:《SPSS13在空白列正交试验设计及其数据处理中的应用》
二
选择正交表
各因素只能调整3个水平,主要有4个因素,因此最先考虑到选用L9(34)的四因素三水平正交表,由于参数水平客观条件的限制,L16(45)正交表可以不用考虑了。
选定L9(34)正交表,遇到一个问题:因素排满,没有空白列用于统计实验误差,怎么呢?所以必须通过重复试验来统计实验误差,你决定每个组合方案重复3次。因此,本实验最终需要27次,将得到27组数据。
三
SPSS正交试验数据录入格式
网上有不少同学提到这个问题,其实数据结果组织形式和无重复试验的格式是一样的,只需要顺次增加行即可。
四
方差分析步骤
菜单操作:
分析→一般线性模型→单变量
因变量:输入残留蛋白
固定因子:输入水解温度,水解时间C加盐量,烘房温度
模型选项卡:以上四个影响因素作为主效应进行分析
方差分析结果:
四个影响因素的sig值均小于0.01,表明四个因素对生产胃蛋白酶都有极显著的影响,验证了最初你的经验。但这还不是我们最终的目的,我们需要得到提高生产效率的最优化工艺组合,直白一点,就是你必须找到每个影响因素最好的那个水平参数。
这个问题在上一篇文章中就有说明,可采用多重比较的方法就行可视化比较。
五
具体做法
多重比较选项卡:将四个具有显著影响的因素依次输入到右侧的“两两比较检验”框中,选择“duncan”法来计算。
单从数据分析的结果来看,最优工艺组合为:A3B3C2D1。值得讨论的问题:水解时间、加盐量两个因素趋势图有些异常,可能和其他两个因素存在交互作用,留给大家讨论。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21