大数据时代 保险业用数据说话_数据分析师
大数据使我们自身和所创造的几乎一切都可被标准化和数字化,然后被存储、挖掘、统计、分析并进入到各种应用之中,从而创造出几乎无穷的功能与商机,帮助我们积累过去、分析现在、预测未来,引领我们实现由数据到知识的转化、由知识到行动的跨越,推动社会、经济乃至整个地球文明的飞速发展。
笔者认为,大数据的本质其实就是建立在充分标准化基础之上的全面数字化的过程及其应用。记录的目的是为了分类存储,所以出现了数据仓库;分类存储的目的是为了统计分析,所以出现了数据挖掘;统计分析的目的是为了发现规律、研究对策、加以运用、实现功能,所以出现了数据可视化、商务智能、政务智能,也包括云计算、物联网、移动终端、外包/众包、互联网金融/保险以及行业垂直整合(合纵)、跨界横向整合(连横)等层出不穷的新概念,进而极大地加快了发展速度,提高了管理效率,方便了消费实现。因此,可以这么说,大数据是今后任何一个组织的核心资产和绝对能力。这些组织,可以是政府、企业,缺乏这种资产和能力的组织,尤其是大型企业,很难在竞争中生存。
这就是趋势,这就是潮流。
就保险,谈保险。笔者认为,保险原理和保险经营的特点与大数据高度吻合。大数据在保险业大有可为,而且可能是融合得最好的行业之一。
大数据时代给保险带来什么
精确定价。保险服务可持续性的基本条件是能够精确定价。如果不能精确定价,保险服务是注定维持不下去的。而精确定价的基础是具备大量面临同质风险的标的。有了大数据,保险公司就可以开展准确的筛选、归类、计算和分析,从供给和需求两个角度为面临各种不同风险的标的提供准确的保险产品定价,并根据风险状况的变动情况持续地开展相应的定价调整,甚至可以依据过去的统计分析开展精确的防灾防损工作,在降低自身承担风险的同时为客户提供增值服务。
精准营销。有了大数据,可以从两个层面实施精准营销:一是对现有和潜在保险消费者的行为和需求进行深入研究、精确分析,预测出消费者的真实或可能需求,精准推送保险产品与服务信息,提高交易成功和客户留存的概率。二是可以实现脱媒,把以大数据为基础、在互联网上开展精准销售上升为保险营销的主渠道,而把现时普遍采用的各类中介营销机构在一定程度上边缘化,成为主渠道的一个补充。这样就可以大大降低保单取得成本,弱化中介营销机构对保险公司的渠道垄断、屏蔽消费者、服务不到位等行为,减少供需之间的环节,显著提高供需双方的信息对称性,为提升服务质量、切实保护好消费者利益创造条件。
精细管理。借助大数据,保险公司决策的制定、工作的部署、问题的解决,都可以做到数字化、实时化、科学化,从而实现精细化的管理。而且,由数据处理系统开展计算、分析和提醒,其效率要比人工处理高很多,成本则会低很多,这将为公司不断降低营运成本、集中资源服务客户创造积极的条件。
精致服务。保险公司可以在精确定价、精准营销、精细管理的基础上,把宝贵而有限的精力和资源尽可能集中到把握外部趋势潮流、整合内部经营效率、组织完善服务体系上来,随时向客户提供精致周到、无微不至的各类服务。
进入大数据时代
融合了信息行业的特点,进入大数据时代的保险公司,不仅要和同业主体,更要和可能与行业外的入侵者竞争,比什么呢?就是比谁的经营理念更清晰;谁的经营模式更先进;谁掌握客户信息数据更多、运用更好;谁的经营更加轻资产化、重数据化;谁的服务组织得更好。经营组织得好,效率就会更高,服务就会更优,客户体验度才能最佳,满意度才会提升。很多服务工作不必保险公司亲身运作、亲力亲为,可以广泛通过采购外包甚至众包来实现。不管在服务的过程中是否采用了外包,也不管外包的比重有多少,谁能用最高的费效比提供最佳的客户体验度和满意度,谁就能在竞争中赢得客户、赢得市场、赢得未来。
没有规矩,不成方圆。从监管的角度来说,总的来看,虽然现阶段保险监管的法规体系已经比较健全完善,但随着经济社会的不断发展,科学技术的不断进步,各种创新的层出不穷,有的规章制度已不能完全适应了,有的还存在缺位现象。大数据时代的来临和电销、网销乃至移销(移动销售)的发展与普及,保险行业面临如何适应趋势潮流、完善整个服务链、提高客户体验度和满意度等艰巨课题,而保险监管也面临着进一步明确管什么、怎么管乃至依据什么管的问题。
因此,笔者认为,在现阶段保险业跨入大数据的时代背景下,监管部门有必要认真研判行业动态和市场趋势,深入了解保险消费者的问题和需求,加紧出台和完善以下两类法规:一是以保护保险消费者利益为目标、明确合同双方各自提供和享有服务的权利义务、规定保护消费者的具体举措和救济渠道的专门法规;二是明确界定互联网保险定义、规范互联网保险合同效力、经营规则和监管政策等一系列专门法规。同时,还必须进一步推动行业积极开展包括互联网保险在内的各类保险服务规范的标准化、制度化建设工作,加快进度、加大力度,既方便监管部门和行业组织开展内部评估,更方便社会第三方机构和广大消费者实施外部监督。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13