5点大数据挖掘要注意 学会整理数据和管理客户流量
互联网+大数据已离不开我们的生活,在企业运作中也是同理。要想让企业快速发展起来,学会利用数据是必备基础之一。本文来源于科技博客 VentureBeat,作者是游戏开发平台GameSalad CEO Stephen Nichols,通过分享自己的企业在数据利用上的经验,提醒众多的创业者不能只凭感觉行走,要用数据说话。
不管是多么小型的创业公司,对于数据挖掘这块都必须要不断扩大、不断深入。拥有越多的数据来源,有更多的数据可以分析,进而得出更准确完美的结论,最终才能更成功地为特定客户群服务。
我们公司在做自己的数据驱动工作时学到的最大教训是——在建立产品之前先努力做好数据和情报的收集分析,并且,从第一天开始就把高度注意力放到用户上。以下是对待数据需要注意的5个要点,或将有助于你从数据中挖掘有价值的信息。
1.先收集用户数据
做数据驱动前,先做好对用户的数据收集。不断挑战自己的假设:用户会是谁?你希望他们是谁?虽然可能先是简单地对网站的访客进行调查,例如询问“是什么促使您来到我们的网站?”但这其中也蕴含着你很有可能忽略的重要信息。
利用有效的工具(如实际用户行为的录像记录)去分析人们从一开始到最终买单的浏览过程是怎么变化的,是什么让他们访问这个页面,而不是其他页面?衡量用户在做什么,并确定哪些关键绩效指标(KPI)需要提高。产品的迭代和用户体验的提升都是让KPI往正确方向前进的因素。
在这里也可以一提很受欢迎的A/B测试(A/B测试是一种新兴的网页优化方法,可以用于增加转化率注册率等网页指标),但我并不依赖于它去做任何决定。它需要消耗大量的流量和耐心去完成统计、验证假设。在大多数情况下,最好选择忽略它,而是专注于KPI以及产品迭代。
2.一开始就从数据出发
在设计产品之初,要考虑用户群体的反馈。通过数据分析工具去分析、设计产品,多维度利用和分析这些数据,可以在以后的改造中节省很多力气。这样一来,初期的产品也可以让你和用户更近,从而观察用户和产品是如何相互影响的,而不是单纯拿一堆调查问题覆盖他们。
3.学会整理数据和管理客户流量
在我们公司,对于不同的功能我们会用不同的供应商,包括数据路径、客户支持和市场营销自动化等。Mixpanel(一家数据跟踪和分析公司)有着我 们的所有原生数据,它监控用户流量,进行留存分析,并建立了转化渠道分析。Segment.io(为移动开发者提供便利的分析数据分发服务的公司)可识别 用户,跟踪用户的活动,和路由数据到合适的地址。内部通讯可触发基于事件的消息以及处理自动化留存信息并参与到营销当中。这让我们可以确定用户的喜好,比 如他们是从哪里登录的,是怎么来到这个网页,以及他们将要去哪些网页。我们还使用了自定义路由系统,让数据保持干净,这对于成千上万的用户产生的大量事件 而言是特别重要的。
4.通过有效的策略以简化流程
我们一早就明白快速迭代的真理:宏大繁杂的设计并不可行。通过快速敏捷的模式,我们不但做到从系统上满足业务的日常需求,还腾出时间和精力去思考新的选择、探索更多的可能替代策略。
我们不断地衡量,检讨,改正,以及重复。按月或季度来计划,有助于提高灵活性。我们每天都不停地关注每个部分、每个细节,去发现我们所知道的和不知道的,一步一步解决那些最困难,最重要的问题,然后迭代产品。
在确立最适合业务发展的用户原型时,使用智能的策略避免陷入寻找原型的怪圈中。找出谁在使用你的产品,这看起来很简单,但它也涉及到查找原生数据以 及找出相关性等问题。这些程序和数据包都存在于R和Physon(数据分析主流编程语言)中,它可以帮助你决定需要哪些以及多少用户原型。
5.赋予员工更多的权限
从“用户的支持”到“用户的成功”的转变看似简单微小,但对员工的态度以及用户的满意度会产生巨大的影响。“支持”意味着一种负担,是你必须做的事 情。而“成功”意味着分享,是你想要做的事情。“让用户成功”是每个员工的职责,因此他们需要被授予权利去代表客户提出建议,被授权的员工也代表着被授权 的用户。
在过去,我们没有工具可以去了解我们的用户行为。现在我们可以看到他们在点击什么,他们是从哪里登录进来的。这样子我们就可以与每一位用户接触,不 管是通过某种渠道还是为了处理个别问题。既然我们知道了谁在访问我们的网站,那么,我们也可以通过他们来接触更广泛的人群。更重要的是,我们可以根据这些 数据继续调整产品、满足用户的需求,而不是只靠单纯的假设。
在往后的时间里,这(数据利用)将会是所有企业的一个基本能力,那些仍沉浸于靠猜测来顺应发展的都将被淘汰
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21