方差分析--T检验和F检验的异同
最近在图书馆借了本《R和ASReml-R统计分析教程》,林元震和陈晓阳主编的关于R的书籍,当时看上这本书的原因在于里面以统计学知识为主,作为R语言实战的良好补充,虽然R语言实战是一本相当详实的介绍R语言的书,但是其中的统计学原理往往一笔带过(虽然本书也不是很详尽),但是作为一个数据分析从业人员,我感觉对于很多统计理论,达到可以讲明白原理和逻辑就可以,具体的计算过程和推导反而在其次,而最重要的是在什么情况下应用什么算法和模型,这才是最关键的。
这篇博客分享下对方差分析的理解。
其实在之前的文章中,对t检验相关说明比较多,而方差分析和t检验方法的功效和作用非常相近,网上对此也不是很详尽,下面首先说说我的理解。
这里说的t检验是双样本t,也就是两组数,看这两组数据对应的总体差异;方差检验也是看两组(及以上)的数据见有没有差异,那么其实二者是不是一样呢?
其实在某种程度是一样的。下面的情况分为两个维度:检验的组数和组内方差
情况1:仅有两组,且组内方差相等
在这种情况下,t检验和F检验相等
我们看下F检验的原理,F检验是看F分布,而F value是SSB/SSW,关于SSB和SSW可以参考可汗学院有一节专门讲组间平方和(SSB)和组内平方和(SSW),如果我们把组间平方和理解为两组之间的差异,组内平方和理解为两组内部不同数据的差异的话,那么简单点说,两个数据在有差异的前提下,究竟是组间的差异大,还是组内的差异大呢?如果是组间的差异大,那么这两组数据本身不一致的概率就非常大了,对应F值比较大;
那么看看两组的t检验,t检验的前提是两组数据都是从不同样本抽出的数据,而样本都符合正态分布,然后用这两个样本推断这两个总体存不存在差异;举个例子,我有一缸黑米,和一缸白米,为了看这两缸米的密度有没有差异,用小勺各盛了十次,观察密度,然后用小勺的十次,去判定总体的差异;如果想用t检验,前提假设是由于随机误差,两缸米在抽取的时候密度会有随机误差,那么每次抽取的密度都呈现正态分布,还有一个假设,就是两个勺子盛的米离散程度是相等的,也就是方差相等。所以,在方差相等,或者说方差齐的前提是t检验的必要前提。而F检验不要求方差齐,或者说本身就是检查方差的差异的。
按照之前的定义,如果两组方差齐,由于F检验的F值是SSB/SSW,组内方差相等,如果两组有变异,那么全部都是由于组间差异造成的,F检验自然成了t检验,下面附上F检验和t检验的代码和结果(数据参考了《R和ASReml-R统计分析教程》中的数据):
weight<-scan()
16.68 20.67 18.42 18 17.44 15.95 18.68 23.22 21.42 19 18.92 NA
V<-rep(c('LY1','DXY'),rep(6,2))
df<-data.frame(V,weight)
a<-subset(df$weight,V=='LY1')
b<-subset(df$weight,V=='DXY')
var.test(a,b)
t.test(a,b,var.equal=T,paired = F)
t检验的结果是:
Two Sample t-test
data: a and b
t = -2.1808, df = 9, p-value = 0.0571
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.86513222 0.08913222
sample estimates:
mean of x mean of y
17.860 20.248
F检验:
fit<-aov(weight~V,data=df)
summary(fit)
结果:
Df Sum Sq Mean Sq F value Pr(>F)
V 1 15.55 15.55 4.756 0.0571 .
Residuals 9 29.43 3.27
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1 observation deleted due to missingness
可以看到p值都是0.0571,相等,因为前提是在t检验中加入了var.test,然后设置参数var.equal=T。下面看看方差不等的情况:
情况2,两组数据,方差不齐
在这种情况下,如果忽略了方差齐的前提,比如我重新做一组数据,先检测防擦:
weight<-scan()
16.68 20.67 18.42 18 17.44 30 18.68 23.22 21.42 19 18.92 82
V<-rep(c('LY1','DXY'),rep(6,2))
df<-data.frame(V,weight)
a<-subset(df$weight,V=='LY1')
b<-subset(df$weight,V=='DXY')
var.test(a,b)
看到检测结果:
F test to compare two variances
data: a and b
F = 0.038913, num df = 5, denom df = 5, p-value = 0.002832
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.005445095 0.278085194
sample estimates:
ratio of variances
0.03891273
p为0.002832,所以方差不齐;
但是然后我们进行方差齐的t检验:
t.test(a,b,var.equal=T,paired = F)
Two Sample t-test
data: a and b
t = -0.98304, df = 10, p-value = 0.3488
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-33.77097 13.09431
sample estimates:
mean of x mean of y
20.20167 30.54000
看到两组均值相等的概率好大;
方差不齐调整后的t检验:
t.test(a,b,var.equal=F,paired = F)
Welch Two Sample t-test
data: a and b
t = -0.98304, df = 5.3885, p-value = 0.3676
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-36.79643 16.11976
sample estimates:
mean of x mean of y
20.20167 30.54000
P值是0.3676 稍微比之前大一些;
F检验:
fit<-aov(weight~V,data=df)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
V 1 321 320.6 0.966 0.349
Residuals 10 3318 331.8
p是0.349;这和t检验在方差齐的前提下是相等的。
我理解是这样的:
t检验的前提是方差齐,只有方差齐了,t检验的结果才反应两组数据的是否有差异,否则如果方差不齐的话,会把组内的差异也考虑进去,所以判定的概率就更宽松;而F检验其实就是看组间差异和组内差异的比较,所以本质上和t检验方差齐的概念相似。但是实际上在方差不齐的时候是无法进行t检验的,结果不具有统计学意义。
情况3&4:多组情况下,方差齐&多组方差不齐
t检验一般适用于两组,所以在多维的情况下,不适用t检验,而F检验可以判定多组、一组多变量和多组间有交互(单因素、协方差、双因素无重复、双因素有重复等),然后在通过两两比较进行分析,用duncan和tukey等方法去判定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30