方差分析:当包含的因子是解释变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析法称作方差分析(ANOVA)。
install.packages(c('multcomp', 'gplots', 'car', 'HH', 'effects', 'rrcov', 'mvoutlier', 'MASS'))
(1)ANOVA 模型拟合
aov()函数的语法为aov(formula, data = dataframe)
1、仅有一个类别型变量,称为单因素方差分析(one-way ANOVA)
2、每个患者在所有水平下都进行了测量,因此这种统计设计称单因素组内方差分析;又由于每个受试者都不止一次被测量,也称作重复测量方差分析
3、当设计包含两个甚至更多的因子时,便是因素方差分析设计,比如两因子时称作双因素方差分析,三因子时称作三因素方差分析。
4、若因子设计包括组内和组间因子,又称作混合模型方差分析
5、当因变量不止一个时,设计被称作多元方差分析(MANOVA), 若协变量也存在, 那么就叫多元协方差分析MANCOVA。
注意,表达式中变量的顺序很重要
有三种类型的方法可以分解等式右边各效应对y所解释的方差。
类型I(序贯型)
效应根据表达式中先出现的效应做调整。A不做调整,B根据A调整,A:B交互项根据A和
B调整。
类型II(分层型)
效应根据同水平或低水平的效应做调整。A根据B调整,B依据A调整,A:B交互项同时根
据A和B调整。
类型III(边界型)
每个效应根据模型其他各效应做相应调整。A根据B和A:B做调整,A:B交互项根据A和B
调整。
R默认调用类型I方法,其他软件(比如SAS和SPSS)默认调用类型III方法
首先是协变量,然后是主效应,接着是双因素的交互项,再接着是三因素的交互项,以此类推。对于主效应,越基础性的变量越应放在表达式前面。
car包中的Anova()函数(不要与标准anova()函数混淆)提供了使用类型II或类型III方法的选项,而aov()函数使用的是类型I方法。
(2)单因素方差分析
单因素方差分析中,你感兴趣的是比较分类因子定义的两个或多个组别中的因变量均值
library(multcomp)
attach(cholesterol)
table(trt) 样本的数量
1time 2times 4times drugD drugE
10 10 10 10 10
aggregate(response, by = list(trt), FUN = mean) 计算每一个方法的均值
Group.1 x
1 1time 5.78197
2 2times 9.22497
3 4times 12.37478
4 drugD 15.36117
5 drugE 20.94752
aggregate(response, by = list(trt), FUN = sd) 计算每一个方法的标准值
Group.1 x
1 1time 2.878113
2 2times 3.483054
3 4times 2.923119
4 drugD 3.454636
5 drugE 3.345003
fit <- aov(response ~ trt)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351.4 337.8 32.43 9.82e-13 ***
Residuals 45 468.8 10.4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
library(gplots)
plotmeans(response ~ trt, xlab = "Treatment", ylab =
"Response",
main = "Mean Plot\nwith 95% CI")
detach(cholesterol)
Tukey HSD的成对组间比较(二二比较)
TukeyHSD(fit)
Fit: aov(formula = response ~ trt)
$trt
diff lwr upr p adj
2times-1time 3.44300 -0.6582817 7.544282 0.1380949
4times-1time 6.59281 2.4915283 10.694092 0.0003542
drugD-1time 9.57920 5.4779183 13.680482 0.0000003
drugE-1time 15.16555 11.0642683 19.266832 0.0000000
4times-2times 3.14981 -0.9514717 7.251092 0.2050382
drugD-2times 6.13620 2.0349183 10.237482 0.0009611
drugE-2times 11.72255 7.6212683 15.823832 0.0000000
drugD-4times 2.98639 -1.1148917 7.087672 0.2512446
drugE-4times 8.57274 4.4714583 12.674022 0.0000037
drugE-drugD 5.58635 1.4850683 9.687632 0.0030633
par(las = 2)
par(mar = c(5, 8, 4, 2))
plot(TukeyHSD(fit))
如果要做单因素的方差分析,因变量要满足正态分布。可以使用QQ图查看。
library(car)
qqPlot(lm(response ~ trt, data = cholesterol), simulate = TRUE, main = "QQ Plot", labels = FALSE)
因变量满足各组方差相等
bartlett.test(response ~ trt, data = cholesterol)
Bartlett test of homogeneity of variances
data: response by trt
Bartlett's K-squared = 0.5797, df = 4, p-value = 0.9653
p-value = 0.9653 越接近1 证明 不同值之间的方差是相等的。
方差齐性分析对离群点非常敏感。可利用car包中的outlierTest()函数来检测离群点:
library(car)
> outlierTest(fit)
No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:
rstudent unadjusted p-value Bonferonni p
19 2.251149 0.029422 NA
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21