大数据驱动制造业华丽转身的中国节拍
在中国制造业依托大数据打翻身仗的阵营中,小米可谓特立独行的领头羊。假如中国有无数个小米那样的企业在紧追大数据的时代潮流,能有更多传统制造企业在努力向智能制造华丽转身,中国制造业的局面定将焕然一新。
在数据为王的时代,大数据已成商业竞争的“定海神针”,得大数据者得天下。亟待转身的制造业非但不例外,而且尤其需要大数据提供驱动力。
工业4.0时代正扑面而来。这是继以蒸汽机、大规模流水线生产和电气自动化为标志的前三次工业革命之后的第四次工业革命。其特点是通过充分利用嵌入式控制系统,即物理信息融合系统(其中“大数据”扮演主角),实现制造业向智能化转型。
大数据(big data)或称海量信息,指的是规模巨大的信息量通过主流软件工具,在合理时间内达到撷取、管理、处理、并整合成帮助企业经营决策、提高核心竞争力的资讯。移动互联网风生水起,让数据变得丰富多样,质感鲜明,显示出它的移动性、碎片化和私密性。大数据里面有商机。在这个信息庞杂、数据处理技术十分先进的时代,只要你有全新理念,就能从一大堆数据中得出各种各样的商业推理,挖掘到丰沛的商机。
全球制造业巨头GE(通用电气)早就意识到这一点。2012年,在GE投资千亿美元进军工业互联网的宏大蓝图中,核心引擎就是大数据分析。GE正用行动证明,传统制造业巨头如何通过物联网和大数据,将物理资源优势转化为数据资源优势。GE设想,通过工业互联网提高效率、降低成本,对产业的影响将不亚于蒸汽机对交通运输业、海底光缆对通讯业的影响。业内人士分析,GE当时这个计划在2015年之前会给其软件部门带来每年两位数的增长。到2015年,GE软件部门年收入可望达到33.2亿美元。
硅谷资深专家William Ruh为GE的战略眼光而折服,他是GE从思科挖来筹建位于美国加州San Ramon的软件中心的,现任GE副总裁。他认为,要想分析由机器产生的大数据可不像喝杯茶那么简单,GE可能是这个世界上能做这件事的少数几个公司之一。GE的优势在于它本身就是全球最大的机器和设备制造商,目前大概有20亿台设备连接在互联网上,到2020年,这个数字将刷新为50亿,其中相当一部分是工业机器和设备。
全球制造业另一巨头西门子在大数据建设上也有不俗表现,且成果斐然。今年德国汉诺威国际工业博览会人满为患,西门子公司展台前,一条代表未来制造业形象的汽车生产线吸引了众多参观者的眼球。两台库卡机器人(38.030, 0.97, 2.62%)珠联璧合,密切协同,紧张而不失有序地装配大众高尔夫7系轿车的车门。令人称奇的是,这两台机器人不仅具备娴熟的装配技艺,还“心有灵犀”,懂得彼此沟通。倘若前一台机器人突然提高了速度,会立即提前通知后一台机器人做好相应准备。不可思议的是,它们还能随时灵活地变换工作任务,几分钟前还在喷涂油漆,几分钟后就可能接受另一项任务,比如安装方向盘或车门。而实现“机器对话”是一次历史性跨越,给按部就班的自动化生产增添了“灵气”,这也是未来制造技术创新的标志之一。这其中任何一个环节都离不开大数据控制。
在大数据和工业互联网浪潮的冲击下,制造业的商业模式也在悄然转变,从销售产品转变为销售服务。有着百年骄人历史的老牌工业企业英格索兰在销售空调压缩机业务中,恰到好处地将周到、精细的服务嵌入整个销售过程中。几年前,英格索兰为竞争日益剧烈的空调压缩机市场所困,意识到一台寿命为15年的空调压缩机,如果没有后续服务跟进,客户就会捂着钱包犹疑。于是,英格索兰下决心将空调压缩机纳入大数据管理,将其变成智能化的可联网产品。客户能通过数据查询,精准地获悉空调压缩机中各个部件的信息,就连某一个螺丝的型号、尺寸、产地,甚至拧螺丝的操作手,都能了如指掌。这样的空调压缩机,怎能不令客户心仪?
20年沧桑巨变,今天中国已是全球制造业大国。来自中国工业与信息化部的统计数据显示,2013年中国工业占GDP的37%,提供全国25%的就业岗位。在500余种工业产品中,有220多种产量居世界第一。中国制造业在全球的占比约为20%。然而,中国制造业面对云蒸霞蔚的移动互联网和大数据景观却有些不知所措,若不赶紧扭转局面,有可能逐渐丧失制造业大国的地位。大而不强是我们的软肋,大多数中国工厂依然龟缩在产业链低端,缺少制造的核心材料、设备、工艺,停留在近乎原始的OEM(贴牌代工)阶段,缺乏原创技术和创新产品。不过,凭借庞大的内需市场支撑,中国制造的优势尚存,13亿人口积累的消费数据十分可观。因此,如果能在大数据挖掘和分析上下点功夫,中国制造业还能保持较强的竞争力。
在中国制造业依托大数据打翻身仗的阵营中,小米可谓特立独行的领头羊。2010年成立的小米公司是中国制造业企业的成功典范,其主打产品小米手机[微博]已蜚声海外,被业内视作苹果、三星[微博]的潜在威胁。从2011年仅30万台的市场销售,到2013年的销售量已飙升到1870万台,2014年可望销售5000万到6000万台。在刚刚过去的“11·11”网上购物狂潮中,小米在天猫[微博]平台上销售手机116万台,又创造了数个第一。
小米超越同行的业绩,缘于其用包括软件、硬件和应用生态的整体方法,小米在创造全新用户体验的同时,高擎大数据的旗帜,颠覆了中国制造业公司的传统做法。有了这样的底气,小米董事长雷军[微博]才敢与传统制造业的“空调玫瑰”、格力掌门人董明珠立下10亿元的对赌承诺。
假如中国有无数个小米那样的企业在紧追大数据的时代潮流,能有更多传统制造企业在努力向智能制造华丽转身,中国制造业的局面定将焕然一新。总有一天,也会在汉诺威工业展览会上大放异彩,成为主角。
在中国制造业依托大数据打翻身仗的阵营中,小米可谓特立独行的领头羊。假如中国有无数个小米那样的企业在紧追大数据的时代潮流,能有更多传统制造企业在努力向智能制造华丽转身,中国制造业的局面定将焕然一新。
在数据为王的时代,大数据已成商业竞争的“定海神针”,得大数据者得天下。亟待转身的制造业非但不例外,而且尤其需要大数据提供驱动力。
工业4.0时代正扑面而来。这是继以蒸汽机、大规模流水线生产和电气自动化为标志的前三次工业革命之后的第四次工业革命。其特点是通过充分利用嵌入式控制系统,即物理信息融合系统(其中“大数据”扮演主角),实现制造业向智能化转型。
大数据(big data)或称海量信息,指的是规模巨大的信息量通过主流软件工具,在合理时间内达到撷取、管理、处理、并整合成帮助企业经营决策、提高核心竞争力的资讯。移动互联网风生水起,让数据变得丰富多样,质感鲜明,显示出它的移动性、碎片化和私密性。大数据里面有商机。在这个信息庞杂、数据处理技术十分先进的时代,只要你有全新理念,就能从一大堆数据中得出各种各样的商业推理,挖掘到丰沛的商机。
全球制造业巨头GE(通用电气)早就意识到这一点。2012年,在GE投资千亿美元进军工业互联网的宏大蓝图中,核心引擎就是大数据分析。GE正用行动证明,传统制造业巨头如何通过物联网和大数据,将物理资源优势转化为数据资源优势。GE设想,通过工业互联网提高效率、降低成本,对产业的影响将不亚于蒸汽机对交通运输业、海底光缆对通讯业的影响。业内人士分析,GE当时这个计划在2015年之前会给其软件部门带来每年两位数的增长。到2015年,GE软件部门年收入可望达到33.2亿美元。
硅谷资深专家William Ruh为GE的战略眼光而折服,他是GE从思科挖来筹建位于美国加州San Ramon的软件中心的,现任GE副总裁。他认为,要想分析由机器产生的大数据可不像喝杯茶那么简单,GE可能是这个世界上能做这件事的少数几个公司之一。GE的优势在于它本身就是全球最大的机器和设备制造商,目前大概有20亿台设备连接在互联网上,到2020年,这个数字将刷新为50亿,其中相当一部分是工业机器和设备。
全球制造业另一巨头西门子在大数据建设上也有不俗表现,且成果斐然。今年德国汉诺威国际工业博览会人满为患,西门子公司展台前,一条代表未来制造业形象的汽车生产线吸引了众多参观者的眼球。两台库卡机器人(38.030, 0.97, 2.62%)珠联璧合,密切协同,紧张而不失有序地装配大众高尔夫7系轿车的车门。令人称奇的是,这两台机器人不仅具备娴熟的装配技艺,还“心有灵犀”,懂得彼此沟通。倘若前一台机器人突然提高了速度,会立即提前通知后一台机器人做好相应准备。不可思议的是,它们还能随时灵活地变换工作任务,几分钟前还在喷涂油漆,几分钟后就可能接受另一项任务,比如安装方向盘或车门。而实现“机器对话”是一次历史性跨越,给按部就班的自动化生产增添了“灵气”,这也是未来制造技术创新的标志之一。这其中任何一个环节都离不开大数据控制。
在大数据和工业互联网浪潮的冲击下,制造业的商业模式也在悄然转变,从销售产品转变为销售服务。有着百年骄人历史的老牌工业企业英格索兰在销售空调压缩机业务中,恰到好处地将周到、精细的服务嵌入整个销售过程中。几年前,英格索兰为竞争日益剧烈的空调压缩机市场所困,意识到一台寿命为15年的空调压缩机,如果没有后续服务跟进,客户就会捂着钱包犹疑。于是,英格索兰下决心将空调压缩机纳入大数据管理,将其变成智能化的可联网产品。客户能通过数据查询,精准地获悉空调压缩机中各个部件的信息,就连某一个螺丝的型号、尺寸、产地,甚至拧螺丝的操作手,都能了如指掌。这样的空调压缩机,怎能不令客户心仪?
20年沧桑巨变,今天中国已是全球制造业大国。来自中国工业与信息化部的统计数据显示,2013年中国工业占GDP的37%,提供全国25%的就业岗位。在500余种工业产品中,有220多种产量居世界第一。中国制造业在全球的占比约为20%。然而,中国制造业面对云蒸霞蔚的移动互联网和大数据景观却有些不知所措,若不赶紧扭转局面,有可能逐渐丧失制造业大国的地位。大而不强是我们的软肋,大多数中国工厂依然龟缩在产业链低端,缺少制造的核心材料、设备、工艺,停留在近乎原始的OEM(贴牌代工)阶段,缺乏原创技术和创新产品。不过,凭借庞大的内需市场支撑,中国制造的优势尚存,13亿人口积累的消费数据十分可观。因此,如果能在大数据挖掘和分析上下点功夫,中国制造业还能保持较强的竞争力。
在中国制造业依托大数据打翻身仗的阵营中,小米可谓特立独行的领头羊。2010年成立的小米公司是中国制造业企业的成功典范,其主打产品小米手机[微博]已蜚声海外,被业内视作苹果、三星[微博]的潜在威胁。从2011年仅30万台的市场销售,到2013年的销售量已飙升到1870万台,2014年可望销售5000万到6000万台。在刚刚过去的“11·11”网上购物狂潮中,小米在天猫[微博]平台上销售手机116万台,又创造了数个第一。
小米超越同行的业绩,缘于其用包括软件、硬件和应用生态的整体方法,小米在创造全新用户体验的同时,高擎大数据的旗帜,颠覆了中国制造业公司的传统做法。有了这样的底气,小米董事长雷军[微博]才敢与传统制造业的“空调玫瑰”、格力掌门人董明珠立下10亿元的对赌承诺。
假如中国有无数个小米那样的企业在紧追大数据的时代潮流,能有更多传统制造企业在努力向智能制造华丽转身,中国制造业的局面定将焕然一新。总有一天,也会在汉诺威工业展览会上大放异彩,成为主角。本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26