热线电话:13121318867

登录
首页精彩阅读NO.2数据仓库和数据挖掘的关系为何?
NO.2数据仓库和数据挖掘的关系为何?
2014-12-10
收藏

若将Data Warehousing(数据仓库)比喻作矿坑,Data Mining就是深入矿坑采 矿的工作。毕竟Data Mining不是一种无中生有的魔术,也不是点石成金的炼金术,若没有够丰富完整的数据,是很难期待Data Mining能挖掘出什么有意义的信息的。

要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统(Decision Support System)所需的数据,供决策支持或数据分析使用。从信息技术的角度来看,数据仓库的目标是在组织中,在正确的时间,将正确的数据交给正确的人。

许多人对于Data Warehousing和Data Mining时常混淆,不知如何分辨。其实,数据仓库数据库技术的一个新主题,利用计算机系统帮助我们操作、计算和思考,让作业方式改变,决策方式也跟着改变。

数据仓库本身是一个非常大的数据库,它储存着由组织作业数据库中整合而来的数据,特别 是指事务处理系统OLTP(On-Line Transactional Processing)所得来的数据。将这些整合过的数据置放于数据仓库中,而公司的决策者则利用这些数据作决策;但是,这个转换及整合数据的过程,是建立一个数据仓库最大的挑战。因为将作业中的数据转换成有用的的策略性信息是整个数据仓库的重点。综上所述,数据仓库应该具有这些数据:整合性数据(integrated data)、详细和汇总性的数据(detailed and summarized data)、历史数据、解释数据的数据。从数据仓库挖掘出对决策有用的信息与知识,是建立数据仓库与使用Data Mining的最大目的,两者的本质与过程是两回事。换句话说,数据仓库应先行建立完成,Data mining才能有效率的进行,因为数据仓库本身所含数据是干净(不会有错误的数据参杂其中)、完备,且经过整合的。因此两者关系或许可解读为Data Mining是从巨大数据仓库中找出有用信息的一种过程与技术。大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖掘库或数据集市中。

数据仓库中直接得到进行数据挖掘的数据有许多好处。就如我们后面会讲到的,数据仓库的数据清理和数据挖掘的数据清理差不多,如果数据在导入数据仓库时已经清理过,那很可能在做数据挖掘时就没必要在清理一次了,而且所有的数据不一致的问题都已经被你解决了。

数据挖掘库可能是你的数据仓库的一个逻辑上的子集,而不一定非得是物理上单独的数据库。但如果你的数据仓库的计算资源已经很紧张,那你最好还是建立一个单独的数据挖掘库。

当然为了数据挖掘你也不必非得建立一个数据仓库数据仓库不是必需的。建立一个巨大的数据仓库,把各个不同源的数据统一在一起,解决所有的数据冲突问题,然后把所有的数据导到一个数据仓库内,是一项巨大的工程,可能要用几年的时间花上百万的钱才能完成。只是为了数据挖掘,你可以把一个或几个事务数据库导到一个只读的数据库中,就把它当作数据集市,然后在他上面进行数据挖掘

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询