【每周一期-数据蒋堂】还原分组运算的本意
【每周一期-数据蒋堂】还原分组运算的本意
分组是SQL中常见的运算,但未必所有人都能深刻地理解它。
分组运算的实质是将一个集合按照某种规则拆分成若干个子集,也就是说,返回值应当是一个由集合构成的集合,但人们一般并不太关心构成这个集合的成员集合(我们称为分组子集),而是对这些子集的聚合值更感兴趣,因此,分组运算常常伴随着对子集的进一步汇总计算。
SQL就是这么做的,在写有GROUP BY子句时,SELECT部分除了分组字段外,就只能写入聚合运算表达式了。当然还有个原因是SQL没有显式的集合数据类型,无法返回集合的集合这类数据,也只能强迫实施聚合运算了。
久而久之,人们会认为分组总是需要配合后续的聚合运算,而忘记了分组和聚合其实是两个独立的步骤。
但是,我们仍然有对这些分组子集而不是聚合值更感兴趣的时候。
比如,我们想找出公司里有哪些员工和其他员工会在同一天过生日,很简单的思路是将员工按生日分组,然后找出成员数大于1的分组子集,再合并起来。这时候我们就不是只对聚合值(分组子集的成员数)感兴趣,而是对分组子集本身更感兴趣。
这个运算用SQL写起来就会比较啰嗦,需要用子查询,并且要遍历两次原集合。
SELECT * FROM employee WHERE birthday IN
( SELECT birthday FROM employee GROUP BY birthday HAVING COUNT(*)>1 )
(题外话:这里假定birthday字段就是生日,其实我们日常意义的生日是没有年份的,而数据表中的birthday字段则会有,这时候还需要把birthday转换成月和日再做GROUP和WHERE,但对于集合化不彻底的SQL,涉及两个成员的IN运算很难写,上面的birthday要改写类似month(birthday()*100+day(birthday)的样子,拼成一个单独的表达式才能使用IN来判断,书写要繁琐很多。)
有集合化更彻底的语法时,就可以保持住分组子集。这就是需要离散性来支持了,分组子集仍然是原集合成员构成。这样,分组和聚合还原成两个步骤,上面的运算就可以很清晰地写出来:
employee.group(month(birthday),day(birthday)).select(~.len()>1).conj()
(在这个表达式中我们使用了前面讲遍历语法时的~符号表示当前成员,也就是遍历过程中的某个分组子集。)
按birthday的月/日分组,过滤出成员数大于1的分组子集,然后求并集。事实上在做过滤时仍然要再二次遍历数据,但只是计数,不需要象SQL那样做比较,性能要好很多。
退一步讲,就算我们只对聚合值感兴趣,我们也可能需要保持住这些分组子集以便反复利用,计算出多种聚合值,而不是完成一次聚合后就将其丢弃,下次再计算时又要重新分组。分组是个成本不低的运算,现在一般使用HASH方法实现分组,计算和比较HASH值都要比简单遍历复杂很多。有些优化不好的计算方案还会使用排序的方法实现分组(很多报表工具是这么做的),性能更会差出一个级别来。
比如我们计算每个部门的人数,再计算出10人以上部门的人员平均年龄。这在SQL中就要写成两句,因为后者需要一个HAVING条件:
SELECT department, COUNT(*) FROM employee GROUP BY department
SELECT department,AVERAGE(age) FROM employee GROUP BY department HAVING COUNT(*)>=10
这里GROUP动作就要被执行两遍。
而如果能够保持分组子集,则只要做一次group就可以了:
g=employee.group(department)
g.new(~.department,~.len())
g.select(~.len()>=10).new(~.department,~.avg(age))
还有的可能是,我们确实只对一个聚合值感兴趣,但这个聚合值很难计算,并不能简单地用SUM/COUNT计算出来的,需要编段程序才行,这时候也需要保留分组子集,而用SQL就很难实现这种运算了。我们会在后续文章中举例。
分组的结果是集合的集合,它仍然是个集合,那显然还可以进一步分组。
g1=employee.group(year(birthday)) //按出生年份分组
g2=g1.group(year(birthday)%100\10) //将所有分组子集按年代分组
g3=g1.(~.group(month(birthday)) //将每个分组子集按出生月份分组
后两步运算都会得到集合的集合的集合,三层或更深的情况在现实业务中很少碰到,但可以用来体会集合的思维方式以及分组运算的本质。
我们知道,SQL针对GROUP后的结果集过滤专门设计了HAVING关键字,许多初学者对HAVING的理解和运用都不到位。其实,HAVING从概念上讲是多余的,它和WHERE并没有任何差别,只是因为SQL无法保持分组子集,要把分组和聚合写在一句话中,又要和WHERE区分,然后硬造出来的一个关键字。如果能够保持分组子集后实现分步计算,HAVING是没有必要的。
蒋步星,清华大学计算机硕士,著有《非线性报表模型原理》等
1989年中国国际奥林匹克数学竞赛团体冠军成员,个人金牌。
2000年创立润乾公司,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准。
2008年开始研发不依赖关系型数据的计算引擎,历经多个版本后,于2014年集算器正式发布。有效地提高了复杂结构化大数据计算的开发速度和运算效率。
2016年荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业 • 十大领军人物”。
2017年将带领润乾软件朝着拥有自主产权的非关系型强计算数据仓库、云数据库等产品迈进。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16