企业应用大数据的三重境界:数据·分析·成果
近几年大数据变得越发重要,已成为企业发展不可缺少的要素,同时直接影响甚至改变着我们的生活。当前,处理数量庞大、增长迅猛、种类繁多的数据成为众多企业面临的挑战。Teradata天睿公司作为全球领先的分析解决方案与咨询服务供应商,基于客户需求,提供领先、全面、有效的解决方案,帮助企业获取商业洞察力,并且将之转化为行动力,创造商业价值。
数据·分析·成果 发现价值到创造价值
在我国乃至全球,很多企业都非常认可数据的价值,持续在做数据积累方面的建设,开发或购买了很多系统,如ERP、CRM等。但这些企业存在一个普遍的问题,那就是拥有如此庞大的数据,却不知如何利用。基于海量数据,利用分析手段获取少量且有效的数据,作用于业务以产生最大价值,是所有企业希望看到的结果。但这个过程真正做起来,不是易事。
Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)表示,简单、量少、信息量相对也少的数据中得出的分析结果是有限的,在具备一定规模且流动的数据环境中得到的分析结果才更有价值。流动数据具有多元化和分析效率两个层面,企业想要得到希望的成果,但挡在前面的是超大规模且多元化数据分析和整合的高门槛。
那么创造价值的过程,就要借力Teradata这样的大数据分析的供应商了。唐青表示,针对多种格式的数据进行分析,会涉及到对数据来源和文本数据的识别。了解用户在使用企业产品和服务过程中的路径情况很重要,如某客户开了卡,有无消费,有无购买其他的分期贷款等。
通过对用户行为的路径追踪,可分析出谁和这个用户有关联,哪些因素会影响其购买行为。企业级应用和消费级用户区别在于,企业级的关系图谱非常复杂,数量级也是指数级增长, 如电信公司的某个分公司就可以梳理几亿条关系图谱。面对这种多种形式的分析,初创公司可能很难驾驭。Teradata的愿景就是帮助企业做分析,让企业清楚地知道客户是谁,谁和这个客户有关联,以及捕获这个客户所有信息、活动信息和活动信息所涉及的渠道。
帮助企业打破数据的桎梏,驱动业务增长
愿景是美好的,但要实行还是要面临业务、人才、架构和部署等方面的挑战。唐青表示,从业务角度来看,我们是否懂得企业的业务场景,具体到哪个业务场景需要改进。从人才资源方面看,如何用合理薪资,招到在操作和执行层面都有很好洞察力的人员。从架构层面看,数据源很多,交互时间变得很快,形式很多,所以对架构设计提出了很高的要求。生态圈的架构师,怎样能够把各种复杂场景的架构设计出来。这里包含来自客户的挑战,如企业架构凌乱且孤立,如何从中寻找统一和协同。在部署过程中,考量性能、流动、成本以及扩展性的同时还要考虑整个体系架构如何在混合云中建设。
唐青表示,Teradata现在正在实施五级转型:
提供业务分析解决方案。助力企业达到可以回答其用户问题的能力,从业务视角、数据模型来寻找客户的业务场景。
业务价值框架。对于咨询公司而言,这是一个重要的、指导性的框架。
专业的数据科学家。这些人才对工具掌握的很好,并且有很强的思维能力,能够把分析带到业务应用中去。
生态圈架构师。这些人会比企业咨询架构师的视角更宽阔、洞察力更有深度。
引入混合云。Teradata大数据平台体系架构,可支持混合云,在云端灵活的做适配。
案例解析 从企业视角解读数据分析的价值
唐青分享了银行的案例,从中我们可以更清晰地看到:数据·分析·成果,企业应用大数据的这三重境界。
过去银行只需通过扩大规模就能提升业绩。现在很多银行开始以客户为中心,以客户需求为导向,优化整个营销体系,打通产品渠道。就像Teradata一样,面向行业同时面向客户,所以在每个客户现场都有合作伙伴或者顾问,都有相配比的生态系统。最终,让所有客户的需求变成商机、变成业务诉求、变成架构实现。传统的银行营销方式,大多是从产品视角来拓展,看把产品卖给哪些客户合适,现在我们从客户视角来看,每个客户都有产生额外产值,增加收入的可能。
唐青表示,Teradata为银行建立客户精细化管理框架,分析每一个客户,把客户进行分类。这样可以做的事情很多,如从中识别哪些是重要客户,哪些是流失客户。在流失客户中识别出谁贡献最大,即使和其中一些失去联系,也可以从做了闭环的网点重新建立联系,挽回流失的客户。
通过银行的客户单一视图系统,客户经理能够及时获得银行用户的基本信息、交易信息及其特征标签,清楚地知道哪些是新客户,哪些客户可能会流失,哪些是睡眠客户。假如银行是上千万级,这样做,哪怕只挽回一个点也是十几万。
试想,如果为每个用户都做画像,清楚的知道整个的生命周期的同时,把其所有的渠道都关联在一起,那么CRM系统就形成了闭环。
这样一来,银行就可以了解客户处于哪个生命周期,有针对性地进行服务。对新用户进行品牌宣传,对衰退期的用户分析流失原因,最重要的是可以做更精准的营销。
写在最后:
未来,银行不仅使用内部数据,可能还会引入一些外部数据对客户进行更精细化的评级。Teradata提供行业领先的大数据解决方案,不仅包括结构化数据的处理及分析方法,还提供非结构化数据的分析手段及方法,更精确地描述客户特征甚至客户的族群标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30