R语言建立时间序列的两个函数
金融数据必须是时间序列,才可进行经济统计分析。建立时间序列,必须有日期作为数据框的一列。R语言建立时间序列的两个函数是ts()和as.xts()。
1.ts()
library(stats) #stats软件包是R语言环境启动的7个软件包
ts(gm,frequency=12,start=c(1975,1))
这个命令表示:
(1) frequency=12表明时间单位为年,而且在每一个时间单位中有12个均匀间隔的观察值。
因此gm是月数据,在金融数据中,常用的有月收益率数据。
(2) start=c(1975,1)表示开始时间为1975年1月。
(3) gm应是列数据,而不能是多列金融数据。而且gm在数据框中选择出来时,应有日期在同一个数据框中。
frequency和start是R中ts()函数产生时间序列对象需要的两个基本参数。frequency的用法,
(a)frequency=4表明时间单位是年,每一个时间单位中有4个季节观察值。
(b)frequency=365表明时间单位是年,每一个时间单位中有365个日期观察值。
若样本容量T<365,则可用frequency=T表示。
start的用法。
(a)若ts(gm,frequency=365,start=c(2014,1,1))建立时间序列。
但是,若用 ts(gm,frequency=365,start=c(2014,1,1),end(2014,12,31))结果将不同。
(b)若用ts(gm,frequency=1,start=c(2014,1,1))则,创建的时间序列start和end不同,将1年的时间单位用1天表示。
这个用法一般是gm只有一年的数据,对此年的数据进行以天为单位的经济统计。
然而金融数据大多数并不是以365个数据为一年的数据,比如股市一年的有效数据一般在240多天,因此frequence的选择应该与一年的实际数据为准。
完整的函数表示:
ts(data = NA, start = 1, end = numeric(0), frequency = 1, deltat = 1,
ts.eps = getOption("ts.eps"), class = , names = )
详细信息可见R语言系统
>?ts
e.g. 参数class
|
class to be given to the result, or none ifNULLor"none". The default is"ts"for a single series,c("mts", "ts", "matrix")for multiple series. |
2.as.xts()
as.xts()与ts()不同,要求行名是日期。因此数据框中的日期必须赋值到行名,
而且删除日期所在的列。
eg1. as.xts()建立时间序列的主要命令
da=read.table("m-gm3dxjsh2016.txt",header=T)
gm2016=da[,1:2] #da[1]是日期,da[2]是金融数据
rownames(gm2016)=gm2016[,1] #将日期赋值到行名,注意不能用gm2016[1],否则长度不同
gm=gm2016[-1] # 去掉第一列
gm1=as.xts(gm[,1]) # 建立金融数据的时间序列,实际上这个语句并能运行,原因见eg2.
将日期赋值到行名的编程方法有很多,第二个程序的数据文件不同。
eg2.as.xts()建立时间序列的完整程序
> da=read.table("D:/programsdata/financialCapital/m-gm3dx2016.txt",head=T)
>head(da)
date gm vw ew sp
1 19750131 0.252033 0.141600 0.299260 0.122812
2 19750228 0.028571 0.058411 0.053918 0.059886
3 19750331 0.054487 0.030191 0.081497 0.021694
4 19750430 0.045593 0.046497 0.031093 0.047265
5 19750530 0.037209 0.055140 0.072876 0.044101
6 19750630 0.107955 0.051473 0.071792 0.044323
>gm2016=da[,1:2] #gm2016是数据框
>head(gm2016)
date gm
1 19750131 0.252033
2 19750228 0.028571
3 19750331 0.054487
4 19750430 0.045593
5 19750530 0.037209
6 19750630 0.107955
> dim(gm2016)
[1] 408 2
> str(gm2016) #成员date是int型
'data.frame': 408 obs. of 2 variables:
$ date: int 19750131 19750228 19750331 19750430 19750530 19750630 19750731 19750829 19750930 19751031 ...
$ gm : num 0.252 0.0286 0.0545 0.0456 0.0372 ...
> d=as.character(gm2016[,1]) #将int型日期转换成Date型
> d1=as.Date(d,format="%Y%m%d")
> head(d1)
[1] "1975-01-31" "1975-02-28" "1975-03-31" "1975-04-30" "1975-05-30"
[6] "1975-06-30"
> class(d1)
[1] "Date"
> gm=gm2016[,2,drop=FALSE] #获得数据框gm2016的第二列,drop=FALSE防止出现向量
> class(gm) #gm是数据框
[1] "data.frame"
> head(gm)
gm
1 0.252033
2 0.028571
3 0.054487
4 0.045593
5 0.037209
6 0.107955
> str(gm) #成员gm的类型是num数值型
'data.frame': 408 obs. of 1 variable:
$ gm: num 0.252 0.0286 0.0545 0.0456 0.0372 ...
> rownames(gm)=d1 #gm的行名是R语言标准时间表示
> head(gm)
gm
1975-01-31 0.252033 #注意19750131是不允许的
1975-02-28 0.028571
1975-03-31 0.054487
1975-04-30 0.045593
1975-05-30 0.037209
1975-06-30 0.107955
>library(xts)
>gm2=as.xts(gm)
比较
ts()和as.xts()两个函数产生的时间序列的plot图略有不同。然而acf图和pacf图则相同。
nm1=as.xts(data1)
nm2=ts(data1,frequency=365,start=c(2014,1,1),end=c(2014,12,31))
acf(nm1,lag=20)
pacf(nm1,lag=20)
acf(nm2,lag=20)
pacf(nm2,lag=20)
plot(nm1)
plot(nm2)
图1 acf和pacf图
图2 两个函数产生的时间序列的plot图
可以看到plot图中,ts()产生的时间序列更为精细,而as.xts()的时间序列则略微粗糙。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17