京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言实现数据操作
1.选择与查看数据
#选定数据
>data(iris)
#查看数据,按列展开,观测数据类型
>str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#按列展开,进行数据统计观测
>summary(iris)
Sepal.Length Sepal.Width
Min. :4.300 Min. :2.000
1st Qu.:5.100 1st Qu.:2.800
Median :5.800 Median :3.000
Mean :5.843 Mean :3.057
3rd Qu.:6.400 3rd Qu.:3.300
Max. :7.900 Max. :4.400
Petal.Length Petal.Width
Min. :1.000 Min. :0.100
1st Qu.:1.600 1st Qu.:0.300
Median :4.350 Median :1.300
Mean :3.758 Mean :1.199
3rd Qu.:5.100 3rd Qu.:1.800
Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
#按行展开,查看前10行
>head(iris,10) Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5.0 3.4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
Petal.Width Species
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa
5 0.2 setosa
6 0.4 setosa
7 0.3 setosa
8 0.2 setosa
9 0.2 setosa
10 0.1 setosa
#按行展开,观测后10行
>tail(iris,10)
Sepal.Length Sepal.Width Petal.Length
141 6.7 3.1 5.6
142 6.9 3.1 5.1
143 5.8 2.7 5.1
144 6.8 3.2 5.9
145 6.7 3.3 5.7
146 6.7 3.0 5.2
147 6.3 2.5 5.0
148 6.5 3.0 5.2
149 6.2 3.4 5.4
150 5.9 3.0 5.1
Petal.Width Species
141 2.4 virginica
142 2.3 virginica
143 1.9 virginica
144 2.3 virginica
145 2.5 virginica
146 2.3 virginica
147 1.9 virginica
148 2.0 virginica
149 2.3 virginica
150 1.8 virginica
#观测数据内的某一行 `
>table(iris$Sepal.Length)
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2
1 3 1 4 2 5 6 10 9 4
5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2
1 6 7 6 8 7 3 6 6 4
6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2
9 7 5 2 8 3 4 1 1 3
7.3 7.4 7.6 7.7 7.9
1 1 1 4 1
#观测数据的容量
> object.size(iris)
7088 bytes
深入观测方法
#选择某一行某一列数据,一行一列
>iris[1,1]
[1] 5.1
#使用c()选择多行
> sepal.iris = iris[,c("Sepal.Length","Sepal.Width")]
> str(sepal.iris)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#指定观测那几行的那几个
> FIVE.sepal.iris = iris[1:5,c("Sepal.Length","Sepal.Width")]
> str(FIVE.sepal.iris)
'data.frame': 5 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6
#设置筛选条件,例如iris中species的仅包括setosa类型的数据,后面指定了列数
> setosa.data = iris[iris$Species=="setosa",1:5]
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#使用subset函数来获取数据集的子集
> sepal.data = subset(iris,select = c("Sepal.Length","Sepal.Width"))
> str(sepal.data)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#subset获取仅包含setosa的数据
> setosa.data = subset(iris,Species=="setosa")
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#subset运用条件来筛选数据
> example.data = subset(iris,Petal.Length<=1.4 & Petal.Width>=0.2,select = Species )
> str(example.data)
'data.frame': 21 obs. of 1 variable:
$ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#具有相同行相同列的数据合并为一组,
> flower.type = data.frame(Species = "setosa",Flower = "iris")
> merge(flower.type,iris[1:3,],by = "Species")
Species Flower Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa iris 5.1 3.5 1.4 0.2
2 setosa iris 4.9 3.0 1.4 0.2
3 setosa iris 4.7 3.2 1.3 0.2
#函数order可以返回指定列进行数据排序后的数据框,下面是花萼长度从大到小排序
> head(iris[order(iris$Sepal.Length,decreasing = TRUE),])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
132 7.9 3.8 6.4 2.0 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
123 7.7 2.8 6.7 2.0 virginica
136 7.7 3.0 6.1 2.3 virginica
106 7.6 3.0 6.6 2.1 virginica
扩展
#函数sub与gsub支持使用正则表达示对字符串的处理,分别替换第一个字符与所有字符
> iris10 = iris
> sub("e","z",names(iris10))
[1] "Szpal.Length" "Szpal.Width" "Pztal.Length" "Pztal.Width" "Spzcies"
> gsub("e","z",names(iris10))
[1] "Szpal.Lzngth" "Szpal.Width" "Pztal.Lzngth" "Pztal.Width" "Spzcizs"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25