京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		R语言实现数据操作
	1.选择与查看数据
#选定数据
>data(iris)
#查看数据,按列展开,观测数据类型  
>str(iris)
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...    
#按列展开,进行数据统计观测  
>summary(iris)  
  Sepal.Length    Sepal.Width   
 Min.   :4.300   Min.   :2.000  
 1st Qu.:5.100   1st Qu.:2.800  
 Median :5.800   Median :3.000  
 Mean   :5.843   Mean   :3.057  
 3rd Qu.:6.400   3rd Qu.:3.300  
 Max.   :7.900   Max.   :4.400  
  Petal.Length    Petal.Width   
 Min.   :1.000   Min.   :0.100  
 1st Qu.:1.600   1st Qu.:0.300  
 Median :4.350   Median :1.300  
 Mean   :3.758   Mean   :1.199  
 3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50  
 #按行展开,查看前10行
 >head(iris,10)                 Sepal.Length Sepal.Width Petal.Length
1           5.1         3.5          1.4
2           4.9         3.0          1.4
3           4.7         3.2          1.3
4           4.6         3.1          1.5
5           5.0         3.6          1.4
6           5.4         3.9          1.7
7           4.6         3.4          1.4
8           5.0         3.4          1.5
9           4.4         2.9          1.4
10          4.9         3.1          1.5
   Petal.Width Species
1          0.2  setosa
2          0.2  setosa
3          0.2  setosa
4          0.2  setosa
5          0.2  setosa
6          0.4  setosa
7          0.3  setosa
8          0.2  setosa
9          0.2  setosa
10         0.1  setosa   
#按行展开,观测后10行  
>tail(iris,10)    
    Sepal.Length Sepal.Width Petal.Length
141          6.7         3.1          5.6
142          6.9         3.1          5.1
143          5.8         2.7          5.1
144          6.8         3.2          5.9
145          6.7         3.3          5.7
146          6.7         3.0          5.2
147          6.3         2.5          5.0
148          6.5         3.0          5.2
149          6.2         3.4          5.4
150          5.9         3.0          5.1
    Petal.Width   Species
141         2.4 virginica
142         2.3 virginica
143         1.9 virginica
144         2.3 virginica
145         2.5 virginica
146         2.3 virginica
147         1.9 virginica
148         2.0 virginica
149         2.3 virginica
150         1.8 virginica
#观测数据内的某一行                `
>table(iris$Sepal.Length)
4.3 4.4 4.5 4.6 4.7 4.8 4.9   5 5.1 5.2 
  1   3   1   4   2   5   6  10   9   4 
5.3 5.4 5.5 5.6 5.7 5.8 5.9   6 6.1 6.2 
  1   6   7   6   8   7   3   6   6   4 
6.3 6.4 6.5 6.6 6.7 6.8 6.9   7 7.1 7.2 
  9   7   5   2   8   3   4   1   1   3 
7.3 7.4 7.6 7.7 7.9 
  1   1   1   4   1 
#观测数据的容量   
> object.size(iris)
7088 bytes                                 
深入观测方法
#选择某一行某一列数据,一行一列   
>iris[1,1]  
[1] 5.1    
#使用c()选择多行   
> sepal.iris = iris[,c("Sepal.Length","Sepal.Width")]
> str(sepal.iris)
'data.frame':   150 obs. of  2 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#指定观测那几行的那几个
> FIVE.sepal.iris = iris[1:5,c("Sepal.Length","Sepal.Width")]
> str(FIVE.sepal.iris)
'data.frame':   5 obs. of  2 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6
#设置筛选条件,例如iris中species的仅包括setosa类型的数据,后面指定了列数
> setosa.data = iris[iris$Species=="setosa",1:5]
> str(setosa.data)
'data.frame':   50 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#使用subset函数来获取数据集的子集
> sepal.data = subset(iris,select = c("Sepal.Length","Sepal.Width"))
> str(sepal.data)
'data.frame':   150 obs. of  2 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#subset获取仅包含setosa的数据
> setosa.data = subset(iris,Species=="setosa")
> str(setosa.data)
'data.frame':   50 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#subset运用条件来筛选数据  
> example.data = subset(iris,Petal.Length<=1.4 & Petal.Width>=0.2,select = Species )
> str(example.data)
'data.frame':   21 obs. of  1 variable:
 $ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#具有相同行相同列的数据合并为一组,
> flower.type = data.frame(Species = "setosa",Flower = "iris")
> merge(flower.type,iris[1:3,],by = "Species")
  Species Flower Sepal.Length Sepal.Width Petal.Length Petal.Width
1  setosa   iris          5.1         3.5          1.4         0.2
2  setosa   iris          4.9         3.0          1.4         0.2
3  setosa   iris          4.7         3.2          1.3         0.2
#函数order可以返回指定列进行数据排序后的数据框,下面是花萼长度从大到小排序
> head(iris[order(iris$Sepal.Length,decreasing = TRUE),])
    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
132          7.9         3.8          6.4         2.0 virginica
118          7.7         3.8          6.7         2.2 virginica
119          7.7         2.6          6.9         2.3 virginica
123          7.7         2.8          6.7         2.0 virginica
136          7.7         3.0          6.1         2.3 virginica
106          7.6         3.0          6.6         2.1 virginica
扩展
#函数sub与gsub支持使用正则表达示对字符串的处理,分别替换第一个字符与所有字符
> iris10 = iris
> sub("e","z",names(iris10))
[1] "Szpal.Length" "Szpal.Width"  "Pztal.Length" "Pztal.Width"  "Spzcies"     
> gsub("e","z",names(iris10))
[1] "Szpal.Lzngth" "Szpal.Width"  "Pztal.Lzngth" "Pztal.Width"  "Spzcizs"
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28