初学者必看丨如何成为一名数据科学家
想从事数据科学领域的初学者总是很困惑:应该学习哪种编程语言?专业重要吗?需要掌握哪些工具和技能?在这篇文章中,你的这些问题都能得到解答。
几星期前,我发布了我的第二篇Kaggle Kernel( Kernel: Kaggle 中用于探索概念、展示技术或分享解决方案的短脚本)。我对Kaggle最近发布的“机器学习和数据科学现状”调查很感兴趣,并认为我可以从中得出一些有趣的见解。我以为大多数写Kernel的人都已经是数据科学家了,比起如何入门,他们应该对其他的内容更感兴趣。
令我惊讶的是,我赢得了每周一次的Kernel奖,我的这篇Kernel最终获得了超过预期的关注度。
在这里我把这篇分享给大家,探究如何成为一名数据科学家。
一、编程语言
据我所知,数据科学领域有两种语言是最常用的,即Python和R语言。我个人比较喜欢R语言,但是好奇在实际情况中是什么样的。
我根据受访者的职位,比较选择Python或R语言作为主要编程语言的人数。事实证明,除了统计学和运筹学之外,其他职位中使用Python的人数更多。然而这两个领域,特别是运筹学由于样本量太小,以至于结果的参考价值并不高。
二、专业和职位
我想知道哪些专业倾向选择哪些职位,因此我创建了比较大学专业和所选职位的图表。
当然,计算机科学专业的人群会成为计算机科学家,程序员和软件工程师。数学专业的人群会选择预测建模,数据科学和统计学职位,物理专业则倾向于进入研究领域。
图表中一个有趣的信息是,每个职位都有至少一名非此专业的人士。这表明,只要你有理想,所学专业不是限制做你想做的事情的理由。
三、学习资源
用来学习数据科学的在线资源特别丰富。我很好奇对于调查的受访者来说哪些在线资源是最有用的。
事实证明,人们认为创建项目,参加课程,参加Kaggle挑战是学习和了解数据科学最有用的方法。我很喜欢从事数据科学的项目,并在完成项目的过程中一步步成长为一名数据科学家。
四、重要的工作技能
调查的另一个问题是询问受访者,他们认为在工作中最有用的技能是什么。
掌握Python和统计知识被认为是最有用的工作技能。这方面R语言略微落后于Python,这反映了第一张图的情况。有趣的是,MOOC(大型开放式网络课程)在实用性方面得分最低。然而上一张图中,人们认为在线课程是学习数据科学最有用的资源之一。这也让我感觉不是跟确定,是不是受访者认为在找工作时,MOOC不应该被用作认证。
五、实际运用的工具
受访者也被问到,他们认为哪些技术在日常工作中最有用。在以下图表中,我分析了所有受访者的情况,以及具体的职位情况。
Python被评为整个行业中最需要掌握的技术。R语言排名第三位。每个职位都说要用到SQL、Jupyter、Unix和TensorFlow了。表明这些可能是不久之后需要掌握的重要技术。
六、实际运用的方法
与上一个问题类似,受访者被问到,他们在工作中实际运用到的数据科学方法。
我们可以看到,每个职业的人群都用到了数据可视化、交叉验证、逻辑回归和决策树。机器学习工程师则要经常使用自然语言处理和神经网络技术。其他职位有相应的方法需要经常使用。
结论
我喜欢运用庞大的数据集,这将非常适合我今后的工作。如果你是一名数据科学家新手,并且正在找工作,那么我给你列出以下几几条建议:
1.学习 Python
Python和R语言都已经存在数十年了。但正如我们在第一张图中看到的那样,在大多数情况下Python是胜出的。图四和图五也反应了这一情况。很难找到一家不使用Python的公司,所以学好Python绝对是没错的。
2.专业选择计算机科学或数学
正如图二所示,每个职位都有不同的专业。然而根据图中的比例来看,每个职位中计算机科学和数学人数是最多的。虽然这不是必须的,但这两个专业能让你在求职中获得一些优势。
3.创建项目、参加课程、参与Kaggle挑战
正如图三所示,学习数据科学方面有些方法特别实用。
4.了解广泛使用的工具
有无数的工具可供我们使用,但通过这次调查,我们了解到哪些是主流的工具。
我希望以上几点能够帮助你起步,逐步成为一名数据科学家。祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12