大数据时代的潜在风险与监管
当前,整个社会正迎来大数据时代。围绕数据的收集、存储、交易、开发等,相继诞生了一系列相关产业,逐渐展现出巨大经济潜力。甚至有一种观点认为,大数据是新时代的“黄金与石油”,是新的重要经济增长点。无疑,新事物的发展会带来机遇,但同时也会带来风险。当大数据呈现出美好的前景、巨大的经济价值以及便捷的个性需求时,它有可能带来的负面风险就尤其值得重视和防范。
首先,对大数据的收集、开发、交易、利用有可能侵害个体安全与人的价值、尊严。所谓大数据,其源头来自于社会个体在经济、社会、政治、个人生活轨迹中所产生的相关信息。通过大数据,可以勾勒和描述具体公民的所有个体与行为特征。在这种情况下,作为独立完整的个体被重新界定为一序列数据集合,并在个体未知的情况下被收集、观察、研究、开发、交易、利用。这就有可能直接损害了个体自身的基本自由与安全,乃至个体尊严。
其次,对大数据的收集、开发、交易、利用有可能损害国家利益与安全。针对大数据对个体可能带来的风险,有种观点认为,对这些数据进行所谓的“脱敏”处理,如隐去个体信息,就可以做到对个体的保护。然而,这种观点忽略了大数据的本质,即大数据的价值不仅在于针对个体的特质与行为描述,而且通过对海量个体信息的综合分析,构建出整个社会行为的全貌。在这个层面上,某一条信息具体来自哪个个体并不重要,重要的是,当对海量信息进行整体分析时,这个国家的经济、社会、政治行为,如商品交易、金融存量、社会偏好、政治倾向,乃至整个民族的特质,包括健康程度、生理特征(如掌握大量就医信息从宏观表征得出)等全貌就会通过大数据的聚合分析而再现。这就不仅侵害了个体自由与安全,而且把整个国家的自由与安全都暴露在数据拥有方手里。
此外,大数据资源具有潜在风险。对大数据开发利用的最大风险来自于大数据信息所具有的不确定性。不但数据的生产者不能确定其价值与危害(如某一个体认为自己的信息即便被收集了也没有关系),数据的收集者、交易者、购买者乃至监管方都难以在短时间内明确其价值与危害。由于大数据总体上是离散的海量数据的组合,通过不同模型与组合方式,就能够获得不同的价值与信息。很多看似完全无关、没有危害的信息,通过有效的组合就能够形成重要的、有价值的信息情报。从某种意义上说,只要掌握足够多的无关信息,就有可能得到想要的一切有价值信息。因此,大数据资源的流出,有可能使得任何一方,乃至监管方都无从评估与预料其产生的潜在危害。一个工业时代的例子就是,传统落后工业产生的矿渣由于无法有效利用被视为废物,而发达国家则通过大量进口废渣二次开发而提炼出具有战略价值的矿业物资。
由此可见,当人们为大数据时代的到来而欢呼时,当社会忙于开发具有巨大潜力的大数据矿藏时,就更加需要高度警惕大数据时代有可能带来的对个体与国家安全的危害和风险。这就提出了一系列围绕大数据的监管问题。
谁有权收集大数据?大数据的产生包括两个渠道,一是法律授权收集而来的,如国家机关从保障公共利益的角度出发收集公民信息;二是公民使用网络设备而自动形成的信息记录,如参与网络社区、网络购物、网络金融等,就会自动生成大量活动信息,从而被提供服务的企业所掌握和收集。这里产生的问题在于,到底谁有权收集公民信息。这个问题非常复杂,在现实中也存在很多情境,然而有一些基本原则需要遵守,首先是利益原则,即只有代表公共利益与更好满足个体利益的情况下,才有权收集公民数据信息;其次是知情与许可原则,也就是说除法律规定强制收集公民信息外,企业收集信息必须经公民知情和同意。
谁有权交易大数据?我们在对大数据进行开发利用时,对数据的需求和交易也逐渐展开。不容否认,企业拥有的大数据资源通过交易,有时可以更好发挥价值,服务公众利益要求,展现出巨大的潜力和经济效益。然而,问题也随即产生,那些一般认为没有价值的信息,经过大数据的系统分析后,可能变成极为有价值的信息,甚至脱敏后的个体信息经过系统分析,依然可能得到事关国家和社会安全的有效信息。如果任何组织都能够通过交易获取所需信息,并进行后期加工,那么这种信息扩散的危害将是不可想象的。所以,必须对参与大数据交易的主体以及其掌握的信息进行严格审查与审批。
如何监管大数据的产生与交易?毋庸置疑,对大数据产业发展的监管主体应是政府。也就是说,政府必须要代表公共利益,严格审查企业进行个体信息收集、储存、开发、利用、交易的全过程;要对企业的数据搜集、开发、交易行为进行评估和安全审查,从而最大程度避免涉及公民安全与国家安全信息的扩散与泄露。
对大数据产业发展有可能带来的风险,美国和欧盟也十分重视,他们的教训和经验值得我们注意。不久前,美国《爱国者法》在执行14年后,未获继续通过,从而收回了对公民信息监控的权限,而欧盟则进一步通过立法强化公民的信息删除权,欧盟法院在2014年底裁定谷歌等商业公司必须在收集公民信息6个月内完全删除。这些都是出于对公民个体乃至国家整体安全的保护。因此,中国在迎来大数据时代的同时,也必须高度重视信息保护,在享受开发大数据时代带来便利的同时,高度警惕和防范所产生的相关风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31