大数据时代的潜在风险与监管
当前,整个社会正迎来大数据时代。围绕数据的收集、存储、交易、开发等,相继诞生了一系列相关产业,逐渐展现出巨大经济潜力。甚至有一种观点认为,大数据是新时代的“黄金与石油”,是新的重要经济增长点。无疑,新事物的发展会带来机遇,但同时也会带来风险。当大数据呈现出美好的前景、巨大的经济价值以及便捷的个性需求时,它有可能带来的负面风险就尤其值得重视和防范。
首先,对大数据的收集、开发、交易、利用有可能侵害个体安全与人的价值、尊严。所谓大数据,其源头来自于社会个体在经济、社会、政治、个人生活轨迹中所产生的相关信息。通过大数据,可以勾勒和描述具体公民的所有个体与行为特征。在这种情况下,作为独立完整的个体被重新界定为一序列数据集合,并在个体未知的情况下被收集、观察、研究、开发、交易、利用。这就有可能直接损害了个体自身的基本自由与安全,乃至个体尊严。
其次,对大数据的收集、开发、交易、利用有可能损害国家利益与安全。针对大数据对个体可能带来的风险,有种观点认为,对这些数据进行所谓的“脱敏”处理,如隐去个体信息,就可以做到对个体的保护。然而,这种观点忽略了大数据的本质,即大数据的价值不仅在于针对个体的特质与行为描述,而且通过对海量个体信息的综合分析,构建出整个社会行为的全貌。在这个层面上,某一条信息具体来自哪个个体并不重要,重要的是,当对海量信息进行整体分析时,这个国家的经济、社会、政治行为,如商品交易、金融存量、社会偏好、政治倾向,乃至整个民族的特质,包括健康程度、生理特征(如掌握大量就医信息从宏观表征得出)等全貌就会通过大数据的聚合分析而再现。这就不仅侵害了个体自由与安全,而且把整个国家的自由与安全都暴露在数据拥有方手里。
此外,大数据资源具有潜在风险。对大数据开发利用的最大风险来自于大数据信息所具有的不确定性。不但数据的生产者不能确定其价值与危害(如某一个体认为自己的信息即便被收集了也没有关系),数据的收集者、交易者、购买者乃至监管方都难以在短时间内明确其价值与危害。由于大数据总体上是离散的海量数据的组合,通过不同模型与组合方式,就能够获得不同的价值与信息。很多看似完全无关、没有危害的信息,通过有效的组合就能够形成重要的、有价值的信息情报。从某种意义上说,只要掌握足够多的无关信息,就有可能得到想要的一切有价值信息。因此,大数据资源的流出,有可能使得任何一方,乃至监管方都无从评估与预料其产生的潜在危害。一个工业时代的例子就是,传统落后工业产生的矿渣由于无法有效利用被视为废物,而发达国家则通过大量进口废渣二次开发而提炼出具有战略价值的矿业物资。
由此可见,当人们为大数据时代的到来而欢呼时,当社会忙于开发具有巨大潜力的大数据矿藏时,就更加需要高度警惕大数据时代有可能带来的对个体与国家安全的危害和风险。这就提出了一系列围绕大数据的监管问题。
谁有权收集大数据?大数据的产生包括两个渠道,一是法律授权收集而来的,如国家机关从保障公共利益的角度出发收集公民信息;二是公民使用网络设备而自动形成的信息记录,如参与网络社区、网络购物、网络金融等,就会自动生成大量活动信息,从而被提供服务的企业所掌握和收集。这里产生的问题在于,到底谁有权收集公民信息。这个问题非常复杂,在现实中也存在很多情境,然而有一些基本原则需要遵守,首先是利益原则,即只有代表公共利益与更好满足个体利益的情况下,才有权收集公民数据信息;其次是知情与许可原则,也就是说除法律规定强制收集公民信息外,企业收集信息必须经公民知情和同意。
谁有权交易大数据?我们在对大数据进行开发利用时,对数据的需求和交易也逐渐展开。不容否认,企业拥有的大数据资源通过交易,有时可以更好发挥价值,服务公众利益要求,展现出巨大的潜力和经济效益。然而,问题也随即产生,那些一般认为没有价值的信息,经过大数据的系统分析后,可能变成极为有价值的信息,甚至脱敏后的个体信息经过系统分析,依然可能得到事关国家和社会安全的有效信息。如果任何组织都能够通过交易获取所需信息,并进行后期加工,那么这种信息扩散的危害将是不可想象的。所以,必须对参与大数据交易的主体以及其掌握的信息进行严格审查与审批。
如何监管大数据的产生与交易?毋庸置疑,对大数据产业发展的监管主体应是政府。也就是说,政府必须要代表公共利益,严格审查企业进行个体信息收集、储存、开发、利用、交易的全过程;要对企业的数据搜集、开发、交易行为进行评估和安全审查,从而最大程度避免涉及公民安全与国家安全信息的扩散与泄露。
对大数据产业发展有可能带来的风险,美国和欧盟也十分重视,他们的教训和经验值得我们注意。不久前,美国《爱国者法》在执行14年后,未获继续通过,从而收回了对公民信息监控的权限,而欧盟则进一步通过立法强化公民的信息删除权,欧盟法院在2014年底裁定谷歌等商业公司必须在收集公民信息6个月内完全删除。这些都是出于对公民个体乃至国家整体安全的保护。因此,中国在迎来大数据时代的同时,也必须高度重视信息保护,在享受开发大数据时代带来便利的同时,高度警惕和防范所产生的相关风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13