热线电话:13121318867

登录
首页精彩阅读SPSS多元线性回归输出结果的详细解释
SPSS多元线性回归输出结果的详细解释
2018-01-07
收藏

SPSS多元线性回归输出结果的详细解释

先说一句题外话,如果当年在大学里数理统计等课程结合SPSS,SAS,R等软件来讲,应该效果会好很多。

最近做了一些用SPSS进行线性回归的实验,还是感觉很多细节把握不好,这里结合我的实验结果,以及网上别人的介绍总结一下,先贴几张SPSS的输出:

下面简单解释一下这三张图中的结果:

第一个表模型汇总表中,R表示拟合优度(goodness of fit),它是用来衡量估计的模型对观测值的拟合程度。它的值越接近1说明模型越好。调整的R平方比调整前R平方更准确一些,图中的最终调整R方为0.550,表示自变量一共可以解释因变量55%的变化(variance),另外,由于使用的是StepWise Linear Regression (SWLR),分析——回归——线性——“方法”选择“逐步”,所以模型1、2、3的R方逐渐增大,标准误差逐渐减小。

(据网友的介绍:一般认为,拟合优度达到0.1为小效应(R方0.01),0.3为中等R方0.09),0.5为大(R方0.25),这是针对自然科学的一般界限。)

第二个表Anova表示方差分析结果,主要看F和sig值两个,F值为方差分析的结果,是一个对整个回归方程的总体检验,指的是整个回归方程有没有使用价值(与随机瞎猜相比),其F值对应的Sig值小于0.05就可以认为回归方程是有用的。另外,从F值的角度来讲:F的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k,n-k-1),则拒绝原假设,即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。

这里简单对Fa(k,n-k-1)进行一下解释,k为自变量个数,n为样本容量,n-k-1为自由度。对于我的实验中的情况来讲,k=3,样本容量为146,所以查表的时候应该差Fa(3,142),一般数理统计课本中都有F分布表,a表示的显著性水平(一般取0.05),但我们手头不一定会有课本,就需要借助于excel来查F表,打开excel,在公式区输入:=FINV(0.05,3,142),在单元格中即出现2.668336761,表中的F值显著大于这个值,则认为各个解释变量对因变量有显著影响。

需要注意的是,方差分析是对多个自变量的总体检验,而不是单个自变量(单个自变量在系数表中,为单样本T检验),这就是第三个表回归系数表中的内容。

系数表格列出了自变量的显著性检验结果(使用单样本T检验),最后一列为T检验的sig,表中均小于0.05,说明自变量对因变量具有显著影响,B表示各个自变量在回归方程中的系数,负值表示IPGF这个自变量对因变量有显著的负向影响,但是由于每个自变量的量纲和取值范围不同,基于B并不能反映各个自变量对因变量影响程度的大小,这时候我们就要借助标准系数。目前表格中的“试用版”实际上是Beta的意思,此时数值越大表示对自变量的影响更大。

从这个分析过程来看,这个实验结果还挺理想的。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询