处理文本是每一种计算机语言都应该具备的功能,但不是每一种语言都侧重于处理文本。R语言是统计的语言,处理文本不是它的强项,perl语言这方面的功能比R不知要强多少倍。幸运的是R语言的可扩展能力很强,DNA/RNA/AA等生物序列现在已经可以使用R来处理。
R语言处理文本的能力虽然不强,但适当用用还是可以大幅提高工作效率的,而且有些文本操作还不得不用。高效处理文本少不了正则表达式(regular expression),虽然R在这方面先天不足,但它处理字符串的绝大多数函数还都使用正则表达式。
Table of Contents
1 正则表达式简介
2 字符数统计和字符翻译
2.1 nchar和length
2.2 tolower,toupper和chartr
3 字符串连接
3.1 paste函数
4 字符串拆分
4.1 strsplit函数
5 字符串查询:
5.1 grep和grepl函数:
5.2 regexpr、gregexpr和regexec
6 字符串替换
6.1 sub和gsub函数
7 字符串提取
7.1 substr和substring函数
8 其他:
8.1 strtrim函数
8.2 strwrap函数
8.3 match和charmatch
1 正则表达式简介
正则表达式不是R的专属内容,这里只做简单介绍,更详细的内容请查阅其他文章。
正则表达式是用于描述/匹配一个文本集合的表达式:
所有英文字母、数字和很多可显示的字符本身就是正则表达式,用于匹配它们自己。比如 “a” 就是匹配字母 “a” 的正则表达式
一些特殊的字符在正则表达式中不在用来描述它自身,它们在正则表达式中已经被“转义”,这些字符称为“元字符”。perl类型的正则表达式中被转 义的字符有:. \ | ( ) [ ] { } ^ $ * + ?。被转义的字符已经有特殊的意义,如点号 . 表示任意字符;方括号表示选择方括号中的任意一个(如[a-z] 表示任意一个小写字符);^ 放在表达式开始出表示匹配文本开始位置,放在方括号内开始处表示非方括号内的任一字符;大括号表示前面的字符或表达式的重复次数;| 表示可选项,即 | 前后的表达式任选一个。
如果要在正则表达式中表示元字符本身,比如我就要在文本中查找问号“?”, 那么就要使用引用符号(或称换码符号),一般是反斜杠 “\”。需要注意的是,在R语言中得用两个反斜杠即 “\\”,如要匹配括号就要写成 “\\(\\)”
不同语言或应用程序(事实上很多规则都通用)定义了一些特殊的元字符用于表示某类字符,如 \d 表示数字0-9, \D 表示非数字,\s 表示空白字符(包括空格、制表符、换行符等),\S 表示非空白字符,\w 表示字(字母和数字),\W 表示非字,\< 和 \> 分别表示以空白字符开始和结束的文本。
正则表达式符号运算顺序:圆括号括起来的表达式最优先,然后是表示重复次数的操作(即:* + {} ),接下来是连接运算(其实就是几个字符放在一起,如abc),最后是表示可选项的运算(|)。所以 “foot|bar” 可以匹配“foot”或者“bar”,但是“foot|ba{2}r”匹配的是“foot”或者“baar”。
2 字符数统计和字符翻译
2.1 nchar和length
nchar这个函数简单,统计向量中每个元素的字符个数,注意这个函数和length函数的差别:nchar是向量元素的字符个数,而length是向量长度(向量元素的个数)。其他没什么需要说的。
x <- c("Hellow", "World", "!") nchar(x)
## [1] 6 5 1
length("")
## [1] 1
nchar("")
## [1] 0
2.2 tolower,toupper和chartr
这三个函数用法也很简单:
DNA <- "AtGCtttACC" tolower(DNA)
## [1] "atgctttacc"
toupper(DNA)
## [1] "ATGCTTTACC"
chartr("Tt", "Uu", DNA)
## [1] "AuGCuuuACC"
chartr("Tt", "UU", DNA)
## [1] "AUGCUUUACC"
3 字符串连接
3.1 paste函数
paste应该是R中最常用字符串函数了,也是R字符串处理函数里面非常纯的不使用正则表达式的函数(因为用不着)。它相当于其他语言的strjoin,但是功能更强大。它把向量连成字串向量,其他类型的数据会转成向量,但不一定是你要的结果:
paste("CK", 1:6, sep = "")
## [1] "CK1" "CK2" "CK3" "CK4" "CK5" "CK6"
x <- list(a = "aaa", b = "bbb", c = "ccc") y <- list(d = 1, e = 2) paste(x, y, sep = "-") #较短的向量被循环使用
## [1] "aaa-1" "bbb-2" "ccc-1"
z <- list(x, y) paste("T", z, sep = ":")
## [1] "T:list(a = \"aaa\", b = \"bbb\", c = \"ccc\")" ## [2] "T:list(d = 1, e = 2)"
短向量重复使用,列表数据只有一级列表能有好的表现,能不能用看自己需要。会得到什么样的结果是可以预知的,用as.character函数看吧,这又是一个字符串处理函数:
as.character(x)
## [1] "aaa" "bbb" "ccc"
as.character(z)
## [1] "list(a = \"aaa\", b = \"bbb\", c = \"ccc\")" ## [2] "list(d = 1, e = 2)"
paste函数还有一个用法,设置collapse参数,连成一个字符串:
paste(x, y, sep = "-", collapse = "; ")
## [1] "aaa-1; bbb-2; ccc-1"
paste(x, collapse = "; ")
## [1] "aaa; bbb; ccc"
4 字符串拆分
4.1 strsplit函数
strsplit函数使用正则表达式,使用格式为:
strsplit(x, split, fixed = FALSE, perl = FALSE, useBytes = FALSE)
参数x为字串向量,每个元素都将单独进行拆分。
参数split为拆分位置的字串向量,默认为正则表达式匹配(fixed=FALSE)。如果你没接触过正则表达式,设置fixed=TRUE,表示使用普通文本匹配或正则表达式的精确匹配。普通文本的运算速度快。
perl=TRUE/FALSE的设置和perl语言版本有关,如果正则表达式很长,正确设置表达式并且使用perl=TRUE可以提高运算速度。
参数useBytes设置是否逐个字节进行匹配,默认为FALSE,即按字符而不是字节进行匹配。
下面的例子把一句话按空格拆分为单词:
text <- "Hello Adam!\nHello Ava!" strsplit(text, " ")
## [[1]] ## [1] "Hello" "Adam!\nHello" "Ava!"
R语言的字符串事实上也是正则表达式,上面文本中的\n在图形输出中是被解释为换行符的。
strsplit(text, "\\s")
## [[1]] ## [1] "Hello" "Adam!" "Hello" "Ava!"
strsplit得到的结果是列表,后面要怎么处理就得看情况而定了:
class(strsplit(text, "\\s"))
## [1] "list"
有一种情况很特殊:如果split参数的字符长度为0,得到的结果就是一个个的字符:
strsplit(text, "")
## [[1]] ## [1] "H" "e" "l" "l" "o" " " "A" "d" "a" "m" "!" "\n" "H" "e" ## [15] "l" "l" "o" " " "A" "v" "a" "!"
从这里也可以看到R把 \n 是当成一个字符来处理的。
5 字符串查询:
5.1 grep和grepl函数:
这两个函数返回向量水平的匹配结果,不涉及匹配字符串的详细位置信息。
grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE, fixed = FALSE, useBytes =FALSE, invert = FALSE) grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE)
虽然参数看起差不多,但是返回的结果不一样。下来例子列出C:\windows目录下的所有文件,然后用grep和grepl查找exe文件:
files <- list.files("c:/windows") grep("\\.exe$", files)
## [1] 8 28 30 35 36 58 69 99 100 102 111 112 115 117
grepl("\\.exe$", files)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE ## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [23] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE ## [34] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [56] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [67] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE ## [100] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [111] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
grep仅返回匹配项的下标,而grepl返回所有的查询结果,并用逻辑向量表示有没有找到匹配。两者的结果用于提取数据子集的结果都一样:
files[grep("\\.exe$", files)]
## [1] "bfsvc.exe" "explorer.exe" "fveupdate.exe" "HelpPane.exe" ## [5] "hh.exe" "notepad.exe" "regedit.exe" "twunk_16.exe" ## [9] "twunk_32.exe" "uninst.exe" "winhelp.exe" "winhlp32.exe" ## [13] "write.exe" "xinstaller.exe"
files[grepl("\\.exe$", files)]
## [1] "bfsvc.exe" "explorer.exe" "fveupdate.exe" "HelpPane.exe" ## [5] "hh.exe" "notepad.exe" "regedit.exe" "twunk_16.exe" ## [9] "twunk_32.exe" "uninst.exe" "winhelp.exe" "winhlp32.exe" ## [13] "write.exe" "xinstaller.exe"
5.2 regexpr、gregexpr和regexec
这三个函数返回的结果包含了匹配的具体位置和字符串长度信息,可以用于字符串的提取操作。
text <- c("Hellow, Adam!", "Hi, Adam!", "How are you, Adam.") regexpr("Adam", text)
## [1] 9 5 14 ## attr(,"match.length") ## [1] 4 4 4 ## attr(,"useBytes") ## [1] TRUE
gregexpr("Adam", text)
## [[1]] ## [1] 9 ## attr(,"match.length") ## [1] 4 ## attr(,"useBytes") ## [1] TRUE ## ## [[2]] ## [1] 5 ## attr(,"match.length") ## [1] 4 ## attr(,"useBytes") ## [1] TRUE ## ## [[3]] ## [1] 14 ## attr(,"match.length") ## [1] 4 ## attr(,"useBytes") ## [1] TRUE
regexec("Adam", text)
## [[1]] ## [1] 9 ## attr(,"match.length") ## [1] 4 ## ## [[2]] ## [1] 5 ## attr(,"match.length") ## [1] 4 ## ## [[3]] ## [1] 14 ## attr(,"match.length") ## [1] 4
6 字符串替换
6.1 sub和gsub函数
虽然sub和gsub是用于字符串替换的函数,但严格地说R语言没有字符串替换的函数,因为R语言不管什么操作对参数都是传值不传址。
text
## [1] "Hellow, Adam!" "Hi, Adam!" "How are you, Adam."
sub(pattern = "Adam", replacement = "world", text)
## [1] "Hellow, world!" "Hi, world!" "How are you, world."
text
## [1] "Hellow, Adam!" "Hi, Adam!" "How are you, Adam."
可以看到:虽然说是“替换”,但原字符串并没有改变,要改变原变量我们只能通过再赋值的方式。 sub和gsub的区别是前者只做一次替换(不管有几次匹配),而gsub把满足条件的匹配都做替换:
sub(pattern = "Adam|Ava", replacement = "world", text)
## [1] "Hellow, world!" "Hi, world!" "How are you, world."
gsub(pattern = "Adam|Ava", replacement = "world", text)
## [1] "Hellow, world!" "Hi, world!" "How are you, world."
sub和gsub函数可以使用提取表达式(转义字符+数字)让部分变成全部:
sub(pattern = ".*(Adam).*", replacement = "\\1", text)
## [1] "Adam" "Adam" "Adam"
7 字符串提取
7.1 substr和substring函数
substr和substring函数通过位置进行字符串拆分或提取,它们本身并不使用正则表达式,但是结合正则表达式函数regexpr、gregexpr或regexec使用可以非常方便地从大量文本中提取所需信息。两者的参数设置基本相同:
substr(x, start, stop) substring(text, first, last = 1000000L)
x均为要拆分的字串向量
start/first 为截取的起始位置向量
stop/last 为截取字串的终止位置向量
但它们的返回值的长度(个数)有差 别:
substr返回的字串个数等于第一个参数的长度
而substring返回字串个数等于三个参数中最长向量长度,短向量循环使用。
先看第1参数(要 拆分的字符向量)长度为1例子:
x <- "123456789" substr(x, c(2, 4), c(4, 5, 8))
## [1] "234"
substring(x, c(2, 4), c(4, 5, 8))
## [1] "234" "45" "2345678"
因为x的向量长度为1,所以substr获得的结果只有1个字串,即第2和第3个参数向量只用了第一个组合:起始位置2,终止位置4。 而substring的语句三个参数中最长的向量为c(4,5,8),执行时按短向量循环使用的规则第一个参数事实上就是c(x,x,x),第二个参数就成了c(2,4,2),最终截取的字串起始位置组合为:2-4, 4-5和2-8。
请按照这样的处理规则解释下面语句运行的结果:
x <- c("123456789", "abcdefghijklmnopq") substr(x, c(2, 4), c(4, 5, 8))
## [1] "234" "de"
substring(x, c(2, 4), c(4, 5, 8))
## [1] "234" "de" "2345678"
用substring函数可以很方便地把DNA/RNA序列进行三联拆分(用于蛋白质翻译):
bases <- c("A", "T", "G", "C") DNA <- paste(sample(bases, 12, replace = T), collapse = "") DNA
## [1] "GCAGCGCATATG"
substring(DNA, seq(1, 10, by = 3), seq(3, 12, by = 3))
## [1] "GCA" "GCG" "CAT" "ATG"
用regexpr、gregexpr或regexec函数获得位置信息后再进行字符串提取的操作可以自己试试看。
8 其他:
8.1 strtrim函数
用于将字符串修剪到特定的显示宽度,其用法为strtrim(x, width),返回字符串向量的长度等于x的长度。因为是“修剪”,所以只能去掉多余的字符不能增加其他额外的字符:如果字符串本身的长度小于 width,得到的是原字符串,别指望它会用空格或其他什么字符补齐:
strtrim(c("abcdef", "abcdef", "abcdef"), c(1, 5, 10))
## [1] "a" "abcde" "abcdef"
strtrim(c(1, 123, 1234567), 4)
## [1] "1" "123" "1234"
8.2 strwrap函数
该函数把一个字符串当成一个段落的文字(不管字符串中是否有换行符),按照段落的格式(缩进和长度)和断字方式进行分行,每一行是结果中的一个字符串。例如:
str1 <- "Each character string in the input is first split into paragraphs\n(or lines containing whitespace only). The paragraphs are then\nformatted by breaking lines at word boundaries. The target\ncolumns for wrapping lines and the indentation of the first and\nall subsequent lines of a paragraph can be controlled\nindependently." str2 <- rep(str1, 2)strwrap(str2, width = 80, indent = 2)
## [1] " Each character string in the input is first split into paragraphs (or lines" ## [2] "containing whitespace only). The paragraphs are then formatted by breaking" ## [3] "lines at word boundaries. The target columns for wrapping lines and the" ## [4] "indentation of the first and all subsequent lines of a paragraph can be" ## [5] "controlled independently." ## [6] " Each character string in the input is first split into paragraphs (or lines" ## [7] "containing whitespace only). The paragraphs are then formatted by breaking" ## [8] "lines at word boundaries. The target columns for wrapping lines and the" ## [9] "indentation of the first and all subsequent lines of a paragraph can be" ## [10] "controlled independently."
simplify参数用于指定结果的返回样式,默认为TRUE,即结果中所有的字符串都按顺序放在一个字符串向量中(如上);如果为FALSE,那么结果将是列表。另外一个参数exdent用于指定除第一行以外的行缩进:
strwrap(str1, width = 80, indent = 0, exdent = 2)
## [1] "Each character string in the input is first split into paragraphs (or lines" ## [2] " containing whitespace only). The paragraphs are then formatted by breaking" ## [3] " lines at word boundaries. The target columns for wrapping lines and the" ## [4] " indentation of the first and all subsequent lines of a paragraph can be" ## [5] " controlled independently."
8.3 match和charmatch
match("xx", c("abc", "xx", "xxx", "xx"))
## [1] 2
match(2, c(3, 1, 2, 4))
## [1] 3
charmatch("xx", "xx")
## [1] 1
charmatch("xx", "xxa")
## [1] 1
charmatch("xx", "axx")
## [1] NA
match按向量进行运算,返回第一次匹配的元素的位置(如果有),非字符向量也可用。charmatch函数真坑爹。其他不看了,其实有正则表达式就足够。
数据分析咨询请扫描二维码
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17