在AI被越来越广泛应用的背景下,不断有“恐AI言论”的出现,关于机器人将抢走人类工作机会的讨论已经屡见不鲜。
2030年,1亿中国人面临职业转型
近日,麦肯锡报告给出了一个触目惊心的数据:在包括人工智能和机器人技术在内的自动化发展迅速的情况下,到2030年,全球8亿人口的工作岗位将被机器取代。
到时,中国高达31%的工作时间将被自动化,中国约有1亿的人口面临职业转换,约占到时就业人口的13%。
中国真会因为人工智能面临大规模的就业变迁吗?3日上午,第四届世界互联网大会在乌镇开幕,多位互联网大佬都对人工智能发表了一番见解。
马云:人类要有自信,机器不可能超越人类
阿里巴巴董事局主席马云在开幕式致辞时表示,对数字经济和网络空间与其担心,不如担当。
随着互联网技术的发展,近年来全球弥漫着一种对新技术的担心,担心机器会抢走人的工作机会,担心机器会控制人类,担心人类会毁灭在自己最伟大的发明中。
“新技术不是让人失业,而是让人做更有价值的事情,让人不去重复自己,而是去创新,让人的工作得到进化。” 马云举例说,清朝时期铁路出现,人们抵制铁路,担心沿线挑夫会失业影响社会稳定,但现在有200多万的铁路工人;集装箱出现后,搬运工人担心会失业,但港口却出现了很多吊船工人。
马云再次强调,与其担心技术夺走就业,不如拥抱技术,去解决新的问题。人类有独特的创造力,所以人类要有自信,机器是不可能超越人类的。
过去30年,我们把人变成了机器,未来30年,我们将把机器变成人,但最终应该让机器更像机器、人更像人。
机器没有灵魂、机器没有信仰,我们人类有灵魂、有信仰、有价值观、有独特的创造力,人类要有自信、相信我们可以控制机器。
未来机器学习、人工智能一定会取代大部分机械的工作,而人类将会从事更有创意、更有创造力、更有体验的工作,服务业一定会成为未来就业的主要来源。
李彦宏:互联网人口红利已消失,未来增长动力是AI
百度公司董事长兼CEO李彦宏表示,他依然坚持去年在世界互联网大会上提到的观点——“无线(移动)互联网已经结束了”。从数据来看,今天中国互联网网民增速只有6%左右。过去四年,中国互联网网民的增速已经慢于中国GDP的成长速度,这意味着互联网的人口红利没有了。
网民红利虽然没有了,但人工智能变为了成长的新动力。李彦宏指出,未来中国数字经济发展的主要推动力是人工智能,人工智能会以非常快的速度向前发展。
他认为,人工智能今天还处在一个发展非常早期的阶段,非常像十几年前的中国互联网的成长。过去中国互联网、世界互联网增长动力有三个:网民人数的增加,上网时间的增加,以及网上信息量的增加。如今,人工智能有三个成长的动力,包括算法、算力、数据:
算法:人工智能尤其是机器学习的算法在过去几年迅速发展,不断的有各种各样的创新,深度学习,DNN、RNN、CNN到GAN……不停地有新的发明创造出来。
算力:如今,计算的成本在不断下降,服务器也变得越来越强大。过去我们觉得人工智能不实用,是因为它会用到的算力太大,大家会觉得在经济上不能够承受。但今天的算力已经到达了临界点,可以使得很多的人工智能变成实际,变得可用。
数据:数据的产生仍然在以一个非常高的速度在发展,尤其对于中国互联网来说,它有非常独特的地方,7.5亿的网民全部说的是同一种语言,全部是同样的文化,全部遵守同样的法律,这么大的一个人群,这么大的一个市场,这么大的一个数据集,并且在不断地产生新的数据,它会进一步推动算法的不断创新,以及对算力提出更新的要求。
李彦宏在演讲结尾指出,汽车只是被人工智能改变的行业之一,未来,从房产到教育、医疗、物流、能源等产业,都会因为人工智能技术而不断发生变化,人工智能对实体经济的推动显而易见:
汽车是一个非常大的产业,在中国大概占到了GDP的六分之一,这样的一个产业,在百年不变的情况下,未来几年会发生巨大的变化。可想而知,人工智能技术对于实体经济、对于各行各业的推动是显而易见的……从房产到教育、医疗、物流、能源等等,我们可以想到的产业都会因为人工智能的技术而发生不断地变化。
库克:我担心人像机器一样思考
苹果首席执行官蒂姆·库克(Tim Cook)表示,很多人都在谈论AI,我并不担心机器人会像人一样思考,我担心人像机器一样思考!我们相信AR能够帮助人们工作,而且帮助人们在教育医疗有所突破,让世界更加美好。
库克认为,我们相信科技是创造机遇并摆脱贫困的力量,科技本身并没有好坏之分,但确保科技富有人性,是我们每个人的共同责任,这也是苹果非常重视的责任。要让科技的使命得以实现,科技的好处也必须普惠于民。
库克说,很多人担心AI技术,未来充满了各种可能性,我们的世界可以变得更好。如果AI可以实现增强现实和机器学习技术,这些技术注入人机理念,可以帮助人们在教育、医疗等领域的辅助功能上实现突破。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21