
Python数据分析常用函数笔记
1、生成随机数列表
import numpy as np
array = np.random.permutation(20)
结果:
array([12, 18, 16, 8, 10, 17, 1, 2, 9, 7, 3, 6, 15, 13, 11, 5, 4, 0, 14, 19])
2、合并两个pandas.DataFrame数据集
import pandas as pd
data1 = {'A1':['A','B','C','D','E','F','G'],
'A2':[1,2,3,4,5,6,7]}
data2 = {'A1':['H','I','J','K','L','M','N'],
'A2':[8,9,10,11,12,13,14]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
frames = [df1, df2] #将两个DataFrame数据放入列表
df = pd.concat(frames)
3、pandas.DataFrame保存CSV文件
df.to_csv("D://df_test.csv", index = False)
index=False,表示不保存索引值,若为True,则保存索引值
4、 # 查看列的名字
df.columns
5、查看所有列的统计描述,包括平均值,标准差,最大最小值,以及25%,50%,75%的 percentile 值
df.describe()
6、Pandas 与 matplotlib 配合使用进行作图
# 首先打开图表行内显示
%matplotlib inline
# 生成600个随机数(符合正态分布),存放在 Series 或 DataFrame 的某一列中
nd = pd.Series(np.random.randn(600))
# bins 表示直方图的方块数
# range 表示图表显示的范围
nd.hist(bins=100, range=(-5,5))
结果如图所示:
7、按轴进行排序
train_df[['job', 'education', 'age', 'marital']].sort_index(axis=1, ascending=False).head()
8、DataFrame 合并
df1 = pd.DataFrame(...)
df2 = pd.DataFrame(...)
df3 = pd.DataFrame(...)
li = list()
li .append(df1)
li .append(df2)
li .append(df3)
df = pd.concat(li)
9、写入、读取Excel文件
写入Excel文件:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
从Excel文件中读取:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
10、读取CSV文件
iris = pd.read_csv(iris_filename, sep=',', decimal='.', header=None, names= ['sepal_length','sepal_width','petal_length','petal_width', 'target']
除了文件名,read_csv函数还可以指定分隔符(sep)、小数点的表达方式(decimal)、是否要标题行(本例中,header=None;通常情况下,如果有标题行,header=0)和变量名称(若全部列检索,则该项可省略)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03