Python list排序的两种方法及实例讲解
对List进行排序,Python提供了两个方法
方法1.用List的内建函数list.sort进行排序
list.sort(func=None, key=None, reverse=False)
Python实例:
>>> list = [2,5,8,9,3]
>>> list
[2,5,8,9,3]
>>> list.sort()
>>> list
[2, 3, 5, 8, 9]
方法2.用序列类型函数sorted(list)进行排序(从2.4开始)
Python实例:
>>> list = [2,5,8,9,3]
>>> list
[2,5,8,9,3]
>>> sorted(list)
[2, 3, 5, 8, 9]
两种方法的区别:
sorted(list)返回一个对象,可以用作表达式。原来的list不变,生成一个新的排好序的list对象。
list.sort() 不会返回对象,改变原有的list。
其他sort的实例:
实例1:正向排序:
>>>L = [2,3,1,4]
>>>L.sort()
>>>L
>>>[1,2,3,4]
实例2:反向排序:
>>>L = [2,3,1,4]
>>>L.sort(reverse=True)
>>>L
[4,3,2,1]
实例3:对第二个关键字排序:
>>>L = [('b',6),('a',1),('c',3),('d',4)]
>>>L.sort(lambda x,y:cmp(x[1],y[1]))
>>>L
[('a', 1), ('c', 3), ('d', 4), ('b', 6)]
实例4: 对第二个关键字排序:
>>>L = [('b',6),('a',1),('c',3),('d',4)]
>>>L.sort(key=lambda x:x[1])
>>>L
[('a', 1), ('c', 3), ('d', 4), ('b', 6)]
实例5: 对第二个关键字排序:
>>>L = [('b',2),('a',1),('c',3),('d',4)]
>>>import operator
>>>L.sort(key=operator.itemgetter(1))
>>>L
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
实例6:(DSU方法:Decorate-Sort-Undercorate):
>>>L = [('b',2),('a',1),('c',3),('d',4)]
>>>A = [(x[1],i,x) for i,x in enumerate(L)] #i can confirm the stable sort
>>>A.sort()
>>>L = [s[2] for s in A]
>>>L
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
以上给出了6中对List排序的方法,其中实例3.4.5.6能起到对以List item中的某一项
为比较关键字进行排序.
效率比较:
cmp < DSU < key
通过实验比较,方法3比方法6要慢,方法6比方法4要慢,方法4和方法5基本相当 。
多关键字比较排序:
实例7:
>>>L = [('d',2),('a',4),('b',3),('c',2)]
>>> L.sort(key=lambda x:x[1])
>>> L
[('d', 2), ('c', 2), ('b', 3), ('a', 4)]
我们看到,此时排序过的L是仅仅按照第二个关键字来排的,
如果我们想用第二个关键字排过序后再用第一个关键字进行排序呢?有两种方法 :
实例8:
>>> L = [('d',2),('a',4),('b',3),('c',2)]
>>> L.sort(key=lambda x:(x[1],x[0]))
>>> L
[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
实例9:
>>> L = [('d',2),('a',4),('b',3),('c',2)]
>>> L.sort(key=operator.itemgetter(1,0))
>>> L
[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
为什么实例8能够工作呢?原因在于tuple是的比较从左到右比较的,比较完第一个,如果相等,比较第二个
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13