大数据时代下,DBA该何去何从
数据库管理员(DBA)的职能已扩展到数据管理、基础架构管理以及工作负载和SLA管理上。作为大数据战略的一部分,DBA的角色又是如何变化的呢?
数据管理
* 为成为数据管理专家而努力。虽然SQL数据库可以扩展以处理大数据,但数据库并不是最优解决方案。DBA正在预算方面做努力,在预算范围内,以最低的成本满足SLA。
* 出现数据ops概念。数据管理和数据治理。数据操作是团队的一部分,在收集和创建数据时共享目标、协作工作。使用自动化来挤压延迟、采取最合适的敏捷方案以提高提高效率。
* 管理、治理和软件交付。维护数据库模型和模式。在大数据中,从定义明确的转换到应用程序和工程师之间的协同工作,一切都是具有探索性的。
* 虽然开发人员认为不需要数据管理,但为了后续的分析数据,DBA们仍需要进行数据管理。
* DBA从管理数据库转变为跨多个系统的数据工程师。他们关注的是数据如何从一个数据库转移到另一个数据库、数据的消耗、数据的调整以及数据流程的管理,对于数据自动分配和执行来说这些都至关重要。
* DBA已经不再是单单只关注像SQLServer和Oracle这样的个人产品,而是必须要处理好企业大数据实施方案的执行问题。
基础架构和平台
DBA的角色已经被推到第一线上。对IT栈的演变负责。基础设施和平台的认定范围变的更大。
* 这是一个不容忽视的大挑战,应用程序所使用的数据库技术不再归于DBA的控制范围内。迁移到云上的比重越大,DBA的控制范围就越小。数据越来越多,同时也在不断推出新的数据库。管理数据基础设施、提出大数据的解决喝整合方案、掌握如何归档和处理灾难恢复的技能。AWS似乎将云中的数据库选项绑定到了DBA上。DBA仍然需要在备份、灾难恢复和海量存储上多费心思。值得在备份和存储方面进行更具战略性的思考。
DBA比以往更重要,因此他们也需要学习:如何有效地集成存储在RDBMS系统中的遗留数据,同时大数据技术也是必不可少的。
* 由于大数据改变了数据架构,DBA的存在可能需要不是立竿见影的,但确实是实实在在的。新技术为数据管理提供了新的契机,使DBA和数据模式打开了一个新时代。
* 事实上,没有数据模式和Hadoop的NoSQL平台,以及支持它的一系列工具,会越来越多地部署在企业中。现在开发人员在数据本身的设计上有更多的影响力。
* 这在扩大DBA的专业范围上起到了推动作用:必须学习NoSQL系统的机制和操作;掌握管理Hadoop集群的能力;实施“无需存储数据存储数据”的方法。
* 而且,NoSQL的灵活性是以数据完整性为代价,这种模型的难度更高。目前,许多公司的网络应用程序的数据完整性已经给灵活性让位了。
* DBA必须适应设计和开发的风格变化。DBA也需要运行几个关系系统,并且认真学习NoSQL技术,对指导公司做出的部署负责。将来可能会划分出几种类型的DBA:局限于技术的;传统的管理员;努力学习并适应管理大数据的新技术和工具的。
* DBA始终是整个软件开发流程的一部分。在目前的环境中,更是需要所有的DBA都参与到整个开发过程中,尤其是规划、范围界定和原型设计部分。DBA能为企业提供有关数据基础设施功能、所需变更成本、潜在性能影响以及总体容量规划等项目的具体信息。
* 鉴于对数据的使用要求,更多特定数据平台范围之外的技术正被用于实施解决方案。DBA不仅仅要专注于SQL、DDL等,还要掌握JavaScript、Java、.NET等技术。DBA会越来越精通应用容器化和系统容器化(Docker、Rkt、Linux容器等)。DBA压力会越来越大,一旦与其他角色联系到一起,数据及其管理都是穿插着多条生命线,因此需要掌握的技术就不断增加。
成功采用大数据策略的企业,早已经把DBA转变为新型数据基础管理员,包括NoSQL数据库和Hadoop在内。与开发数据管理逻辑的数据开发人员、处理和准备数据的数据科学家以及业务线上的数据分析人员相结合,DBA是操作大数据战略的重要部分。现在,DBA依赖于更智能的工具,这些工具可以管理并报告各种数据库和技术框架的数据基础架构和流程。
工作负载和SLA
* 工作结构消失了。有类型更为广泛的问题需要解决。要实现混合的环境在流和批处理中交付新的工作负载,同时又能跟得上变化。
* 现在,有许多不在数据库中管理数据,而是将数据组织成超级管理数据的数据生态系统一部分的做法。了解通信、链接的速度、安全性以及如何将来源汇集在一起。
* 比起以往,现在有更多的技术管理。理解并管理一个数据仓库的技术方法有10到20种。为了能给问题选择出正确的技术,便于管理,规模较大的企业正在考虑将搜索、NoSQL、Hadoop和GPU技术标准化。
* 从一个拥有数据库领域知识的系统管理员,到现在需要掌握处理数据集成、非结构化数据、自然语言处理、文档存储和统计。工具集可以能够简化工作。关系数据库不会有大的进展,但大数据存储会有新变化。
1. 大数据时代,DBA的角色发生了重大变化。在很长一段时间里,DBA仅仅只是一个系统管理员。他们的确有SQL知识、知道该如何优化SQL,以及对构建数据库的理解,但他们并没有主动参与到数据库系统里数据的特定用途上。
2. 大数据DBA对数据和非关系数据模型的应用程序有更深入的了解,并且必须具备执行数据集成的知识,这些数据集超出了用于商业智能(BI)应用的传统提取——转换——加载过程(ETL)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31