大数据定义、思维方式及架构模式
一、大数据何以为大
数据现在是个热点词汇,关于有了大数据,如何发挥大数据的价值,议论纷纷,而笔者以为,似乎这有点搞错了原因与结果,就象关联关系,有A的时候,B与之关联,而有B的时候,A却未必关联,笔者还是从通常的4个V来描述一下我所认为的大数据思维。
1、大数据的量,数据量足够大,达到了统计性意义,才有价值。笔者看过的一个典型的案例就是,例如传统的,收集几千条数据,很难发现血缘关系对遗传病的影响,而一旦达到2万条以上,那么发现这种影响就会非常明显。那么对于我们在收集问题时,是为了发现隐藏的知识去收集数据,还是不管有没有价值地收集,这还是值得商榷的。其实收集数据,对于数据本身,还是可以划分出一些标准,确立出层级,结合需求、目标来收集,当然有人会说,这样的话,将会导致巨大的偏差,例如说丧失了数据的完整性,有一定的主观偏向,但是笔者以为,这样至少可以让收集到的数据的价值相对较高。
2、大数据的种类,也可以说成数据的维度,对于一个对象,采取标签化的方式,进行标记,针对需求进行种类的扩充,和数据的量一样,笔者认为同样是建议根据需求来确立,但是对于标签,有一个通常采取的策略,那就是推荐标签和自定义标签的问题,分类法其实是人类文明的一大创举,采取推荐标签的方式,可以大幅度降低标签的总量,而减少后期的规约工作,数据收集时扩充量、扩充维度,但是在数据进入应用状态时,我们是希望处理的是小数据、少维度,而通过这种推荐、可选择的方式,可以在标准化基础上的自定义,而不是毫无规则的扩展,甚至用户的自定义标签给予一定的限制,这样可以使维度的价值更为显现。
3、关于时效性,现在进入了读秒时代,那么在很短的时间进行问题分析、关联推荐、决策等等,需要的数据量和数据种类相比以前,往往更多,换个说法,因为现在时效性要求高了,所以处理数据的方式变了,以前可能多人处理,多次处理,现在必须变得单人处理、单次处理,那么相应的信息系统、工作方式、甚至企业的组织模式,管理绩效都需要改变,例如笔者曾经工作的企业,上了ERP系统,设计师意见很大,说一个典型案例,以往发一张变更单,发出去工作结束,而上了ERP系统以后,就必须为这张变更单设定物料代码,设置需要查询物料的存储,而这些是以前设计师不管的,又没有为设计师为这些增加的工作支付奖励,甚至因为物料的缺少而导致变更单不能发出,以至于设计师工作没有完成,导致被处罚。但是我们从把工作一次就做完,提升企业的工作效率角度,这样的设计变更与物料集成的方式显然是必须的。那么作为一个工作人员,如何让自己的工作更全面,更完整,避免王府,让整个企业工作更具有时间的竞争力,提高数据的数量、种类、处理能力是必须的。
4、关于大数据价值,一种说法是大数据有大价值,还有一种是相对于以往的结构化数据、少量数据,现在是大数据了,所以大数据的单位价值下降。笔者以为这两种说法都正确,这是一个从总体价值来看,一个从单元数据价值来看的问题。而笔者提出一个新的关于大数据价值的观点,那就是真正发挥大数据的价值的另外一个思路。这个思路就是针对企业的问题,首先要说什么是问题,笔者说的问题不是一般意义上的问题,因为一说问题,大家都以为不好、错误等等,而笔者的问题的定义是指状态与其期望状态的差异,包括三种模式,
1)通常意义的问题,例如失火了,必须立即扑救,其实这是三种模式中最少的一种;
2)希望保持状态,
3)期望的状态,这是比原来的状态高一个层级的。
我们针对问题,提出一系列解决方案,这些解决方案往往有多种,例如员工的培训,例如设备的改进,例如组织的方式的变化,当然解决方案包括信息化手段、大数据手段,我们一样需要权衡大数据的方法是不是一种相对较优的方法,如果是,那么用这种手段去解决,那么也就是有价值了。例如笔者知道的一个案例,一个企业某产品部件偶尔会出现问题,企业经历数次后决定针对设备上了一套工控系统,记录材料的温度,结果又一次出现问题时,进行分析认为,如果工人正常上班操作,不应该有这样的数据记录,而经过与值班工人的质询,值班工人承认其上晚班时睡觉,没有及时处理。再往后,同样的问题再没有再次发生。
总结起来,笔者以为大数据思维的核心还是要落实到价值上,面向问题,收集足够量的数据,足够维度的数据,达到具有统计学意义,也可以满足企业生产、客户需求、甚至竞争的时效要求,而不是一味为了大数据而大数据,这样才是一种务实、有效的正确思维方式,是一线大数据的有效的项目推进方式,在这样的思维模式基础上,采取滚雪球方式,把大数据逐步展开,才真正赢来大数据百花齐放的春天。
二、大数据思维方式
大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:
1)人们处理的数据从样本数据变成全部数据;
2)由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;
3)人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相关关系。
事实上,大数据时代带给人们的思维方式的深刻转变远不止上述三个方面。笔者认为,大数据思维最关键的转变在于从自然思维转向智能思维,使得大数据像具有生命力一样,获得类似于“人脑”的智能,甚至智慧。
1、总体思维
社会科学研究社会现象的总体特征,以往采样一直是主要数据获取手段,这是人类在无法获得总体数据信息条件下的无奈选择。在大数据时代,人们可以获得与分析更多的数据,甚至是与之相关的所有数据,而不再依赖于采样,从而可以带来更全面的认识,可以更清楚地发现样本无法揭示的细节信息。
正如舍恩伯格总结道:“我们总是习惯把统计抽样看作文明得以建立的牢固基石,就如同几何学定理和万有引力定律一样。但是,统计抽样其实只是为了在技术受限的特定时期,解决当时存在的一些特定问题而产生的,其历史不足一百年。如今,技术环境已经有了很大的改善。在大数据时代进行抽样分析就像是在汽车时代骑马一样。
在某些特定的情况下,我们依然可以使用样本分析法,但这不再是我们分析数据的主要方式。”也就是说,在大数据时代,随着数据收集、存储、分析技术的突破性发展,我们可以更加方便、快捷、动态地获得研究对象有关的所有数据,而不再因诸多限制不得不采用样本研究方法,相应地,思维方式也应该从样本思维转向总体思维,从而能够更加全面、立体、系统地认识总体状况。
2、容错思维
在小数据时代,由于收集的样本信息量比较少,所以必须确保记录下来的数据尽量结构化、精确化,否则,分析得出的结论在推及总体上就会“南辕北辙”,因此,就必须十分注重精确思维。然而,在大数据时代,得益于大数据技术的突破,大量的非结构化、异构化的数据能够得到储存和分析,这一方面提升了我们从数据中获取知识和洞见的能力,另一方面也对传统的精确思维造成了挑战。
舍恩伯格指出,“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户”。也就是说,在大数据时代,思维方式要从精确思维转向容错思维,当拥有海量即时数据时,绝对的精准不再是追求的主要目标,适当忽略微观层面上的精确度,容许一定程度的错误与混杂,反而可以在宏观层面拥有更好的知识和洞察力。
3、相关思维
在小数据世界中,人们往往执着于现象背后的因果关系,试图通过有限样本数据来剖析其中的内在机理。小数据的另一个缺陷就是有限的样本数据无法反映出事物之间的普遍性的相关关系。而在大数据时代,人们可以通过大数据技术挖掘出事物之间隐蔽的相关关系,获得更多的认知与洞见,运用这些认知与洞见就可以帮助我们捕捉现在和预测未来,而建立在相关关系分析基础上的预测正是大数据的核心议题。
通过关注线性的相关关系,以及复杂的非线性相关关系,可以帮助人们看到很多以前不曾注意的联系,还可以掌握以前无法理解的复杂技术和社会动态,相关关系甚至可以超越因果关系,成为我们了解这个世界的更好视角。舍恩伯格指出,大数据的出现让人们放弃了对因果关系的渴求,转而关注相关关系,人们只需知道“是什么”,而不用知道“为什么”。我们不必非得知道事物或现象背后的复杂深层原因,而只需要通过大数据分析获知“是什么”就意义非凡,这会给我们提供非常新颖且有价值的观点、信息和知识。也就是说,在大数据时代,思维方式要从因果思维转向相关思维,努力颠覆千百年来人类形成的传统思维模式和固有偏见,才能更好地分享大数据带来的深刻洞见。
4、智能思维
不断提高机器的自动化、智能化水平始终是人类社会长期不懈努力的方向。计算机的出现极大地推动了自动控制、人工智能和机器学习等新技术的发展,“机器人”研发也取得了突飞猛进的成果并开始一定应用。应该说,自进入到信息社会以来,人类社会的自动化、智能化水平已得到明显提升,但始终面临瓶颈而无法取得突破性进展,机器的思维方式仍属于线性、简单、物理的自然思维,智能水平仍不尽如人意。
但是,大数据时代的到来,可以为提升机器智能带来契机,因为大数据将有效推进机器思维方式由自然思维转向智能思维,这才是大数据思维转变的关键所在、核心内容。众所周知,人脑之所以具有智能、智慧,就在于它能够对周遭的数据信息进行全面收集、逻辑判断和归纳总结,获得有关事物或现象的认识与见解。同样,在大数据时代,随着物联网、云计算、社会计算、可视技术等的突破发展,大数据系统也能够自动地搜索所有相关的数据信息,并进而类似“人脑”一样主动、立体、逻辑地分析数据、做出判断、提供洞见,那么,无疑也就具有了类似人类的智能思维能力和预测未来的能力。
“智能、智慧”是大数据时代的显著特征,大数据时代的思维方式也要求从自然思维转向智能思维,不断提升机器或系统的社会计算能力和智能化水平,从而获得具有洞察力和新价值的东西,甚至类似于人类的“智慧”。
舍恩伯格指出,“大数据开启了一个重大的时代转型。就像望远镜让我们感受宇宙,显微镜让我们能够观测到微生物一样,大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发”。
大数据时代将带来深刻的思维转变,大数据不仅将改变每个人的日常生活和工作方式,改变商业组织和社会组织的运行方式,而且将从根本上奠定国家和社会治理的基础数据,彻底改变长期以来国家与社会诸多领域存在的“不可治理”状况,使得国家和社会治理更加透明、有效和智慧。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16