哑变量在SPSS和SAS进行回归分析应用
虚拟变量(Dummy Variable),又称虚设变量、名义变量或哑变量,是量化了的质变量,通常取值为0或1。引入哑变量可使线形回归模型变得更复杂,但对问题描述更简明。
名义变量引入回归分析,必须进行数量化。如,职业有工人、农民、教师,分别赋值0,1,2。但是0,1,2代表的实际意义又不是由小到大的关系。所以这在回归分析中直接使用是错误的。如考虑季节因素时,用1,2,3,4编码也是不合理的,通常也进行哑变量化。
对于有序变量,如轻、中、重,则要酌情考虑。如果样本量足够打的话,也进行哑变量化,这样可以得到不同级别的差异。但是如果样本量不够大是,哑变量化造成变量数目上升,使回归结果变得不可靠,只能适得其反。
哑变量设置的原则
在模型中引入多个哑变量时,哑变量的个数应按下列原则确定:
如果有m种互斥的属性类型,在模型中引入(m-1)个哑变量。
例如,文化程度分小学、初中、高中、大学、研究生5类,引用4个哑变量
回归分析
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用computer或recode设置一组哑变量。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,讲所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。解决的方法是:将同一因素下的哑变量进行归组,在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它连续型变量和二分类变量则归为另一组,纳入方法为STEPWISE。然后在没有纳入这组哑变量的情况下再做一次STEPWISE,再来比较是不是应该纳入这组哑变量。
在sas中,哑变量的设置需要另外写程序,但是在回归程序中,则比较简单。eg.因变量y,自变量x1,x2,哑变量组x31 x32 x33,
proc reg;
model y=x1 x2 {x31 x32 x33} /selection=stepwise;
run;
即,把哑变量组用{}括起来就可以了。
SPSS多元线性回归哑变量设置
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用compute或recode设置一组哑变量。比如学历有三个等级:高中及以下,本科,研究生及以上。设置两个哑变量:学历1,学历2。下面以compute为例说明如何定义哑变量。
利用compute对学历1,学历2进行计算。设置成学历为高中及以下时学历1=0,历为高中及以下时学历2=0;学历为本科时学历1=1,为本科时学历2=0;为研究生及以上时学历1=0,为研究生及以上时学历2=1。
举例如下:
在SPSS中将多分类变量设置为哑变量比较麻烦,其中的一种方法就是将该多分类变量转换成N-1列的哑变量,举例来说,原多分类变量有四个取值(A/B/C/D),这时需要设置三列哑变量,比如D2,D3,D4
用如果变量值是B,则D2=1,否则取0,如果是C,则用D3=1,否则取0,如果是D,则D4=1,否则取0
D2 D3 D4
1 0 0——》B
0 1 0——》C
1 0 0——》B
0 0 1——》D
0 0 0——》A
注意,4分类只能设置3个哑变量!
定义好所有的哑变量之后,接下来就可以进行多元线性回归的计算了。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,将所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。
解决的方法是:将同一因素下的哑变量进行归组(block),在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它因素的哑变量另一组(block),除哑变量之外,其余自变量归为一个block,纳入方法为STEPWISE。
结果的解读方面,只要哑变量有其中一个有统计学显著性,就应该把整个因素包含的哑变量纳入回归方程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30