R语言与显著性检验学习笔记
一、何为显著性检验
显著性检验的思想十分的简单,就是认为小概率事件不可能发生。虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验中没有发生。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设),与H0对立的假设记作H1,称为备择假设。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的假设检验又称为显著性检验,概率α称为显著性水平。
我们常用的显著性检验有t检验,卡方检验,相关性检验等,在做这一些检验时,有什么需要注意的呢?
二、正态性与P值
t检验,卡方检验,相关性检验中的pearson方法都是建立在正态样本的假设下的,所以在假设检验开始时,一般都会做正态性分析。在R中可以使用shapiro.test()。来作正态性检验。当然在norm.test包中还提供了许多其他的方法供我们选择。
P值是可以拒绝原假设的最小水平值。
三、四个重要的量
综合前面的叙述,我们知道研究显著性检验有四个十分重要的量:样本大小,显著性水平,功效,效应值。
样本大小:这个显然,样本越多,对样本的把握显然越准确,但是鉴于我们不可能拥有无限制的样本,那么多少个样本可以达到要求?今天的分享中我们可以通过R来找到答案。
显著性水平:犯第一类错误的概率,这个在做检验前我们会提前约定,最后根据P值来决定取舍。
功效:这个是在显著性检验中一般不提及但实际十分有用的量。它衡量真实事件发生的概率。也就是说功效越大,第二类错误越不可能发生。虽然显著性假设检验不提及它,但衡量假设检验的好坏的重要指标便是两类错误尽可能小。
效应值:备择假设下效应的量
四、用pwr包做功效分析
Pwr包中提供了以下函数:
下面我们来介绍以上一些函数的用法。
1、 t检验
调用格式:
pwr.t.test(n = NULL, d = NULL, sig.level =0.05, power = NULL, type =c("two.sample", "one.sample", "paired"),alternative = c("two.sided", "less","greater"))
参数说明:
N:样本大小
D:t检验的统计量
Sig.level:显著性水平
Power:功效水平
Type:检验类型,这里默认是两样本,且样本量相同
Alternative:统计检验是双侧还是单侧,这里默认为双侧
举例说明:已知样本量为60,单一样本t检验的统计量的值为0.2(这个可以通过t.test(data)$statistic取出来),显著水平α=0.1,那么功效是多少呢?
R中输入命令:
[plain] view plain copy
pwr.t.test(d=0.2,n=60,sig.level=0.10,type="one.sample",alternative="two.sided")
得到结果:
One-sample t test power calculation
n = 60
d = 0.2
sig.level = 0.1
power = 0.4555818
alternative = two.sided
我们可以看到,犯第二类错误的概率在50%以上,我们应该相信这个结果吗(无论根据P值来看是拒绝还是接受)?显然不行,那么需要多少个样本才能把第二类错误降低到10%呢?
在R中输入:
[plain] view plain copy
pwr.t.test(d=0.2,power=0.9,sig.level=0.10,type="one.sample",alternative="two.sided")
得到结果:
One-sample t test power calculation
n = 215.4542
d = 0.2
sig.level = 0.1
power = 0.9
alternative = two.sided
也就是说216个样本才可以得到满意的结果,使得第二类错误概率不超过0.1.
对于两样本而言是类似的,我们不在赘述,我们下面再介绍另一种t检验的情况:两样本不相等。
调用格式:
pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL,sig.level = 0.05, power = NULL, alternative = c("two.sided","less","greater"))
参数说明:
n1 Numberof observations in the first sample
n2 Numberof observations in the second sample
d Effectsize
sig.level Significancelevel (Type I error probability)
power Powerof test (1 minus Type II error probability)
alternative acharacter string specifying the alternative hypothesis, must be one of"two.sided" (default), "greater" or "less"
例如:两个样本量为90,60,统计量为0.6,单侧t检验,α=0.05,为望大指标。
R中的命令:
[plain] view plain copy
pwr.t2n.test(d=0.6,n1=90,n2=60,alternative="greater")
输出结果:
t test power calculation
n1 = 90
n2 = 60
d = 0.6
sig.level = 0.05
power = 0.9737262
alternative = greater
可以看出功效十分大,且α=0.05,我们相信这次检验的结论很可信。
2、 相关性
Pwr.r.test()函数对相关性分析进行功效分析。格式如下:
pwr.r.test(n = NULL, r = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
这里和t检验不同的是r是线性相关系数,可以通过cor(data1,data2)获取,但需要注意的是不要输入spearman,kendall相关系数,他们是衡量等级相关的。
假定我们研究抑郁与孤独的关系,我们的原假设和备择假设为:
H0:r<0.25 v.s. H1:r>0.25
假定显著水平为0.05,原假设不真,我们想有90%的信心拒绝H0,需要观测多少呢?
下面的代码给出答案:
[plain] view plain copy
pwr.r.test(r=0.25,sig.level=0.05,power=0.9,alt="greater")
approximate correlation power calculation (arctangh transformation)
n = 133.8325
r = 0.25
sig.level = 0.05
power = 0.9
alternative = greater
易见,需要样本134个
3、 卡方检验
原假设为变量之间独立,备择假设为变量不独立。命令为pwr.chisq.test(),调用格式:
pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL)
其中w为效应值,可以通过ES.w2计算出来,df为列联表自由度
举例:
[plain] view plain copy
prob<-matrix(c(0.225,0.125,0.125,0.125,0.16,0.16,0.04,0.04),nrow=2,byrow=TRUE)
prob
ES.w2(prob)
pwr.chisq.test(w=ES.w2(prob),df=(2-1)*(4-1),N=200)
输出结果:
Chi squared power calculation
w = 0.2558646
N = 200
df = 3
sig.level = 0.05
power = 0.8733222
NOTE: N is the number of observations
也就是说,这个观测下反第二类错误的概率在13%左右,结果较为可信。
在R中还有不少与功效分析有关的包,我们不加介绍的把它们列举如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31