R语言与显著性检验学习笔记
一、何为显著性检验
显著性检验的思想十分的简单,就是认为小概率事件不可能发生。虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验中没有发生。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设),与H0对立的假设记作H1,称为备择假设。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的假设检验又称为显著性检验,概率α称为显著性水平。
我们常用的显著性检验有t检验,卡方检验,相关性检验等,在做这一些检验时,有什么需要注意的呢?
二、正态性与P值
t检验,卡方检验,相关性检验中的pearson方法都是建立在正态样本的假设下的,所以在假设检验开始时,一般都会做正态性分析。在R中可以使用shapiro.test()。来作正态性检验。当然在norm.test包中还提供了许多其他的方法供我们选择。
P值是可以拒绝原假设的最小水平值。
三、四个重要的量
综合前面的叙述,我们知道研究显著性检验有四个十分重要的量:样本大小,显著性水平,功效,效应值。
样本大小:这个显然,样本越多,对样本的把握显然越准确,但是鉴于我们不可能拥有无限制的样本,那么多少个样本可以达到要求?今天的分享中我们可以通过R来找到答案。
显著性水平:犯第一类错误的概率,这个在做检验前我们会提前约定,最后根据P值来决定取舍。
功效:这个是在显著性检验中一般不提及但实际十分有用的量。它衡量真实事件发生的概率。也就是说功效越大,第二类错误越不可能发生。虽然显著性假设检验不提及它,但衡量假设检验的好坏的重要指标便是两类错误尽可能小。
效应值:备择假设下效应的量
四、用pwr包做功效分析
Pwr包中提供了以下函数:
下面我们来介绍以上一些函数的用法。
1、 t检验
调用格式:
pwr.t.test(n = NULL, d = NULL, sig.level =0.05, power = NULL, type =c("two.sample", "one.sample", "paired"),alternative = c("two.sided", "less","greater"))
参数说明:
N:样本大小
D:t检验的统计量
Sig.level:显著性水平
Power:功效水平
Type:检验类型,这里默认是两样本,且样本量相同
Alternative:统计检验是双侧还是单侧,这里默认为双侧
举例说明:已知样本量为60,单一样本t检验的统计量的值为0.2(这个可以通过t.test(data)$statistic取出来),显著水平α=0.1,那么功效是多少呢?
R中输入命令:
[plain] view plain copy
pwr.t.test(d=0.2,n=60,sig.level=0.10,type="one.sample",alternative="two.sided")
得到结果:
One-sample t test power calculation
n = 60
d = 0.2
sig.level = 0.1
power = 0.4555818
alternative = two.sided
我们可以看到,犯第二类错误的概率在50%以上,我们应该相信这个结果吗(无论根据P值来看是拒绝还是接受)?显然不行,那么需要多少个样本才能把第二类错误降低到10%呢?
在R中输入:
[plain] view plain copy
pwr.t.test(d=0.2,power=0.9,sig.level=0.10,type="one.sample",alternative="two.sided")
得到结果:
One-sample t test power calculation
n = 215.4542
d = 0.2
sig.level = 0.1
power = 0.9
alternative = two.sided
也就是说216个样本才可以得到满意的结果,使得第二类错误概率不超过0.1.
对于两样本而言是类似的,我们不在赘述,我们下面再介绍另一种t检验的情况:两样本不相等。
调用格式:
pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL,sig.level = 0.05, power = NULL, alternative = c("two.sided","less","greater"))
参数说明:
n1 Numberof observations in the first sample
n2 Numberof observations in the second sample
d Effectsize
sig.level Significancelevel (Type I error probability)
power Powerof test (1 minus Type II error probability)
alternative acharacter string specifying the alternative hypothesis, must be one of"two.sided" (default), "greater" or "less"
例如:两个样本量为90,60,统计量为0.6,单侧t检验,α=0.05,为望大指标。
R中的命令:
[plain] view plain copy
pwr.t2n.test(d=0.6,n1=90,n2=60,alternative="greater")
输出结果:
t test power calculation
n1 = 90
n2 = 60
d = 0.6
sig.level = 0.05
power = 0.9737262
alternative = greater
可以看出功效十分大,且α=0.05,我们相信这次检验的结论很可信。
2、 相关性
Pwr.r.test()函数对相关性分析进行功效分析。格式如下:
pwr.r.test(n = NULL, r = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
这里和t检验不同的是r是线性相关系数,可以通过cor(data1,data2)获取,但需要注意的是不要输入spearman,kendall相关系数,他们是衡量等级相关的。
假定我们研究抑郁与孤独的关系,我们的原假设和备择假设为:
H0:r<0.25 v.s. H1:r>0.25
假定显著水平为0.05,原假设不真,我们想有90%的信心拒绝H0,需要观测多少呢?
下面的代码给出答案:
[plain] view plain copy
pwr.r.test(r=0.25,sig.level=0.05,power=0.9,alt="greater")
approximate correlation power calculation (arctangh transformation)
n = 133.8325
r = 0.25
sig.level = 0.05
power = 0.9
alternative = greater
易见,需要样本134个
3、 卡方检验
原假设为变量之间独立,备择假设为变量不独立。命令为pwr.chisq.test(),调用格式:
pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL)
其中w为效应值,可以通过ES.w2计算出来,df为列联表自由度
举例:
[plain] view plain copy
prob<-matrix(c(0.225,0.125,0.125,0.125,0.16,0.16,0.04,0.04),nrow=2,byrow=TRUE)
prob
ES.w2(prob)
pwr.chisq.test(w=ES.w2(prob),df=(2-1)*(4-1),N=200)
输出结果:
Chi squared power calculation
w = 0.2558646
N = 200
df = 3
sig.level = 0.05
power = 0.8733222
NOTE: N is the number of observations
也就是说,这个观测下反第二类错误的概率在13%左右,结果较为可信。
在R中还有不少与功效分析有关的包,我们不加介绍的把它们列举如下:
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16