1. 决策树背景知识
决策树是数据挖掘中最重要且最常用的方法之一,主要应用于数据挖掘中的分类和预测。决策树是知识的一种呈现方式,决策树中从顶点到每个结点的路径都是一条分类规则。决策树算法最先基于信息论发展起来,经过几十年发展,目前常用的算法有:ID3、C4.5、CART算法等。
2. 决策树一般构建过程
构建决策树是一个自顶向下的过程。树的生长过程是一个不断把数据进行切分细分的过程,每一次切分都会产生一个数据子集对应的节点。从包含所有数据的根节点开始,根据选取分裂属性的属性值把训练集划分成不同的数据子集,生成由每个训练数据子集对应新的非叶子节点。对生成的非叶子节点再重复以上过程,直到满足特定的终止条件,停止对数据子集划分,生成数据子集对应的叶子节点,即所需类别。测试集在决策树构建完成后检验其性能。如果性能不达标,我们需要对决策树算法进行改善,直到达到预期的性能指标。
注:分裂属性的选取是决策树生产过程中的关键,它决定了生成的决策树的性能、结构。分裂属性选择的评判标准是决策树算法之间的根本区别。
3. ID3算法分裂属性的选择——信息增益
属性的选择是决策树算法中的核心。是对决策树的结构、性能起到决定性的作用。ID3算法基于信息增益的分裂属性选择。基于信息增益的属性选择是指以信息熵的下降速度作为选择属性的方法。它以的信息论为基础,选择具有最高信息增益的属性作为当前节点的分裂属性。选择该属性作为分裂属性后,使得分裂后的样本的信息量最大,不确定性最小,即熵最小。
信息增益的定义为变化前后熵的差值,而熵的定义为信息的期望值,因此在了解熵和信息增益之前,我们需要了解信息的定义。
信息:分类标签xi 在样本集 S 中出现的频率记为 p(xi),则 xi 的信息定义为:−log2p(xi) 。
分裂之前样本集的熵:E(S)=−∑Ni=1p(xi)log2p(xi),其中 N 为分类标签的个数。
通过属性A分裂之后样本集的熵:EA(S)=−∑mj=1|Sj||S|E(Sj),其中 m 代表原始样本集通过属性A的属性值划分为 m 个子样本集,|Sj| 表示第j个子样本集中样本数量,|S| 表示分裂之前数据集中样本总数量。
通过属性A分裂之后样本集的信息增益:InfoGain(S,A)=E(S)−EA(S)
注:分裂属性的选择标准为:分裂前后信息增益越大越好,即分裂后的熵越小越好。
4. ID3算法
ID3算法是一种基于信息增益属性选择的决策树学习方法。核心思想是:通过计算属性的信息增益来选择决策树各级节点上的分裂属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据进行分类。
ID3算法流程:
(1) 创建一个初始节点。如果该节点中的样本都在同一类别,则算法终止,把该节点标记为叶节点,并用该类别标记。
(2) 否则,依据算法选取信息增益最大的属性,该属性作为该节点的分裂属性。
(3) 对该分裂属性中的每一个值,延伸相应的一个分支,并依据属性值划分样本。
(4) 使用同样的过程,自顶向下的递归,直到满足下面三个条件中的一个时就停止递归。
A、待分裂节点的所有样本同属于一类。
B、训练样本集中所有样本均完成分类。
C、所有属性均被作为分裂属性执行一次。若此时,叶子结点中仍有属于不同类别的样本时,选取叶子结点中包含样本最多的类别,作为该叶子结点的分类。
ID3算法优缺点分析
优点:构建决策树的速度比较快,算法实现简单,生成的规则容易理解。
缺点:在属性选择时,倾向于选择那些拥有多个属性值的属性作为分裂属性,而这些属性不一定是最佳分裂属性;不能处理属性值连续的属性;无修剪过程,无法对决策树进行优化,生成的决策树可能存在过度拟合的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03