面对大数据过分渲染宣传,你需要了解的9件事
大数据和开放数据不是一回事,但他们有着密切的联系(正如我在主题发言稿“未来的大数据将会开放到什么程度?”上写到的)。我们正在关注的大数据一些趋势和话题与开放数据也有关系。按照这样的脉络,就出炉了这篇我在去哥伦布的路上学到的《了解大数据的九件事》。在研讨会的官网上可以看到我用黑体标注的人们的名字。
为大数据的激烈反应做好准备。很多演讲者提到了“大数据过分渲染宣传”的话题,认为大数据被讨论得如此热烈,以至于我们现在可以进入一个反应性的循环。MikeNelson对他在公开场合看到的逐渐出现的“垃圾数据”提出了责难,甚至建议我们应该重新命名大数据,它可以有一个“大兄弟”–就像很多人一样。他建议改名为:BFFMUDD,是大(Big)、肥(Fat)、快(Fast)、乱(Messy)、非结构化(Unstructured)、分布式数据(DistributedData)的缩写。
意识到“大数据的狂妄自大”.好几位演讲者引用了一份新报告,报告显示,“Google流感趋势”–大数据预测价值的首批大范例之一–被证明非常不准确。显然,Google可能自作聪明地以一种错误的方式调整了其算法。不管什么样的错误,这都是个教训,表明如果不着眼于更广阔的图景,而只是试图通过碾碎数据来发现真相,通常情况下无法获得预期效果。
数据不能代替判断。数据,尤其大数据是可以帮助人类做出决策的工具,但不能起到代替的作用。RayHarishankar是这样说的:“数据加上分析是信息,信息加上语境可以提供洞察力,洞察力必定能导向正确的行动,正确的行动则带来提升价值的结果”.
相关关系不能强过理论。一些大数据的倡导者认为大数据几乎让理论变得多余:他们说,有了足够的数据,即使没有理论说明其原因,我们也可以发现很多重要和有益的模式和趋势。确实,简单的相关关系在一定程度上就可以驱动精确的预测。但即便是具备预测分析的能力,也并不意味着你就能真正地理解你正在研习的系统是如何运行的。EytanAdar建议我们审视大数据范围从预测性到解释性的所有相关努力,并且更多地关注如何理解我们所看到的东西,而不是仅仅关注可预测未来的模式。
大数据正在-冒着风险–追踪一个“移动”
社会。在全球范围,移动设备都已经成为人类的首选在线连接工具。FarnamJahanian指出到2015年全球移动设备的数量将是人口数量的两倍,所有的设备都可以发送位置信息和其它数据给能够收集这些数据的公司。这将成为未来社会大数据的主要来源之一。但KateCrawford?指出了这里的隐私风险:由于人类移动行为模式的独特性,你可以仅用3-4个手机生成的数据点就能识别一个人。
大数据能帮助–或者损害城市的民主体制。正如HarveyMiller所说,通过手机数据、远程环境感应器、激光生成的航空地图和更多工具来追踪城市活动的能力,可以给我们创造拥有更高代谢功能的超级协调城市。(遗憾的是,我不得不在MichaelBatty关于城市分析的主题演讲之前离开,不过他在个人网站上提供了演讲内容)但是,KateCrawford在这里再次提出了警告。如果我们不小心,城市数据收集就会不对称地帮助富人而伤害穷人。比如,波士顿的StreetBumpAPP应用通过追踪智能手机的摆动状态来收集坑洼里的数据,用志愿者的数据来反映一条道路的颠簸不平。但大多数智能手机的拥有者都属于生活富裕的人群,以至于最初是在更富有的地区监测和修复坑洼–这是StreetBump目前正在致力于修正的难题。在相反的另一面,“预测监控”正在被用于将警察管制实施于预测将会有高犯罪率的地区,这将导致歧视性的执法。
隐私仍然事关要紧。忘掉那些宣称公众,尤其是年轻人已经放弃隐私的报告吧。我们仍然关心隐私问题,只是不知道该怎么做。这里有两个考虑因素:我们想知道政府机构或数据跟踪公司收集到了哪些关于我们的数据信息,以及如果我们不喜欢,则想让他们停止收集。关于如何解决这些考虑因素还不是很清晰。会上的一些发言者建议采用简单的解决方案:让政府和公司对它们正在收集的数据更公开透明,这是一些人称之为“互相确认的公开”的方法。但是一个长期的透明度倡导者GaryBass说,这个建议的解决方案“不是真实的世界。在过去的30年里,我拼命地斗争让数据变得可获取,而政府和公司则拼命地让数据不可获取……这是一场旷日持久的斗争”.正如其他人所说,这里的风险在于我们可能增强了数据收集者和被收集者之间的力量不对称性。
大数据应当展现数据之美。数据可视化方面的迅速进步正在创造一些美轮美奂的效果。比如,看一看这部“体验自行车人流”的视频,逐渐解析伦敦自行车交通的数据,展示俄亥俄州超级计算机中心最清晰的模式和部分已经完成的可视化作品。类似这样的数据可视化并不仅仅关乎美学,而是与理解息息相关。IBM公司的一位数据可视化专家AngelaShen-Hsieh谈到人们需要使数据更加“适合人类消费”,以及关注从计算机屏幕到人脑的信息传递旅程中的“最后18英寸”.
大数据将(很有可能)产生大价值。抛开所有的警告不管,大数据中有很多社会价值和经济价值可以发掘。麦肯锡几年前一份具有里程碑意义的大数据报告预测它将撬动数万亿美元的经济价值。这项研究的联合作者,微软公司的AngelaByers?今天说到,也许仍需要5-10年时间才能产生这样的价值,部分原因是我们仍然面临一个重要的技能鸿沟:即可获得的数据数量和清楚如何利用这些数据的人的数量之间存在的差距。但是经济价值正在逐步显现,并且以某种令人惊异的方式呈现。JohanBollen和他的团队成员运用Twitter上的大数据情感分析来预测股票市场:他们计算Twitter上的“镇静”情绪来预测道琼斯指数三天后的收盘点位。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16