
python 实例简述 k-近邻算法的基本原理
首先我们一个样本集合,也称为训练样本集,在训练样本集中每个数据都存在一个标签用来指明该数据的所属分类。在输入一个新的未知所属分类的数据后,将新数据的所有特征和样本集中的所有数据计算距离。从样本集中选择与新数据距离最近的 k 个样本,将 k 个样本中出现频次最多的分类作为新数据的分类,通常 k 是小于20的,这也是 k 的出处。
k近邻算法的优点:精度高,对异常值不敏感,无数据输入假定。
k 近邻算法的缺点:时间复杂度和空间复杂度高
数据范围:数值型和标称型
简单的k 近邻算法实现
第一步:使用 python 导入数据
from numpy import *
import operator
'''simple kNN test'''
#get test data
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
作为例子,直接创建数据集和标签,实际应用中往往是从文件中读取数据集和标签。array 是 numpy 提供的一种数据结构,用以存储同样类型的数据,除了常规数据类型外,其元素也可以是列表和元组。这里 group 就是元素数据类型为 list 的数据集。labels 是用列表表示的标签集合。其中 group 和 labels 中的数据元素一一对应,比如数据点[1.0,1.1]标签是 A,数据点[0,0.1]标签是 B。
第二步:实施 kNN 算法
kNN 算法的自然语言描述如下:
1. 计算已知类别数据集中的所有点与未分类点之间的距离。
2. 将数据集中的点按照与未分类点的距离递增排序。
3. 选出数据集中的与未分类点间距离最近的 n 个点。
4. 统计这 n 个点中所属类别出现的频次。
5. 返回这 n 个点中出现频次最高的那个类别。
实现代码:
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
classify0函数中的四个参数含义分别如下:inX 是希望被分类的数据点的属性向量,dataSet 是训练数据集向量,labels 是标签向量,k 是 kNN 算法的参数 k。
接下来来看看本函数的语句都做了那些事。
第一行dataSetSize=dataSet.shape[0],dataSet 是 array 类型,那么dataSet.shape表示 dataSet 的维度矩阵,dataSet.shape[0]表示第二维的长度,dataSet.shape[1]表示第一维的长度。在这里dataSetSize 表示训练数据集中有几条数据。
第二行tile(inX,(dataSetSize,1))函数用以返回一个将 inX 以矩阵形式重复(dataSetSize,1)遍的array,这样产生的矩阵减去训练数据集矩阵就获得了要分类的向量和每一个数据点的属性差,也就是 diffMat。
第三行**在 python 中代表乘方,那么sqDiffMat也就是属性差的乘方矩阵。
第四行array 的 sum 函数若是加入 axis=1的参数就表示要将矩阵中一行的数据相加,这样,sqDistances的每一个数据就代表输入向量和训练数据点的距离的平方了。
第五行不解释,得到了输入向量和训练数据点的距离矩阵。
第六行sortedDistIndicies=distances.argsort(),其中 argsort 函数用以返回排序的索引结果,直接使用 argsort 默认返回第一维的升序排序的索引结果。
然后创建一个字典。
接下来进行 k 次循环,每一次循环中,找到 i 对应的数据的标签,并将其所在字典的值加一,然后对字典进行递减的按 value 的排序。
这样循环完成后,classCount 字典的第一个值就是kNN 算法的返回结果了,也就是出现最多次数的那个标签。
二维的欧式距离公式如下,很简单:
相同的,比如说四维欧式距离公式如下:
第三步:测试分类器
在测试 kNN 算法结果的时候,其实就是讨论分类器性能,至于如何改进分类器性能将在后续学习研究中探讨,现在,用正确率来评估分类器就可以了。完美分类器的正确率为1,最差分类器的正确率为0,由于分类时类别可能有多种,注意在分类大于2时,最差分类器是不能直接转化为完美分类器的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20