python 实例简述 k-近邻算法的基本原理
首先我们一个样本集合,也称为训练样本集,在训练样本集中每个数据都存在一个标签用来指明该数据的所属分类。在输入一个新的未知所属分类的数据后,将新数据的所有特征和样本集中的所有数据计算距离。从样本集中选择与新数据距离最近的 k 个样本,将 k 个样本中出现频次最多的分类作为新数据的分类,通常 k 是小于20的,这也是 k 的出处。
k近邻算法的优点:精度高,对异常值不敏感,无数据输入假定。
k 近邻算法的缺点:时间复杂度和空间复杂度高
数据范围:数值型和标称型
简单的k 近邻算法实现
第一步:使用 python 导入数据
from numpy import *
import operator
'''simple kNN test'''
#get test data
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
作为例子,直接创建数据集和标签,实际应用中往往是从文件中读取数据集和标签。array 是 numpy 提供的一种数据结构,用以存储同样类型的数据,除了常规数据类型外,其元素也可以是列表和元组。这里 group 就是元素数据类型为 list 的数据集。labels 是用列表表示的标签集合。其中 group 和 labels 中的数据元素一一对应,比如数据点[1.0,1.1]标签是 A,数据点[0,0.1]标签是 B。
第二步:实施 kNN 算法
kNN 算法的自然语言描述如下:
1. 计算已知类别数据集中的所有点与未分类点之间的距离。
2. 将数据集中的点按照与未分类点的距离递增排序。
3. 选出数据集中的与未分类点间距离最近的 n 个点。
4. 统计这 n 个点中所属类别出现的频次。
5. 返回这 n 个点中出现频次最高的那个类别。
实现代码:
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
classify0函数中的四个参数含义分别如下:inX 是希望被分类的数据点的属性向量,dataSet 是训练数据集向量,labels 是标签向量,k 是 kNN 算法的参数 k。
接下来来看看本函数的语句都做了那些事。
第一行dataSetSize=dataSet.shape[0],dataSet 是 array 类型,那么dataSet.shape表示 dataSet 的维度矩阵,dataSet.shape[0]表示第二维的长度,dataSet.shape[1]表示第一维的长度。在这里dataSetSize 表示训练数据集中有几条数据。
第二行tile(inX,(dataSetSize,1))函数用以返回一个将 inX 以矩阵形式重复(dataSetSize,1)遍的array,这样产生的矩阵减去训练数据集矩阵就获得了要分类的向量和每一个数据点的属性差,也就是 diffMat。
第三行**在 python 中代表乘方,那么sqDiffMat也就是属性差的乘方矩阵。
第四行array 的 sum 函数若是加入 axis=1的参数就表示要将矩阵中一行的数据相加,这样,sqDistances的每一个数据就代表输入向量和训练数据点的距离的平方了。
第五行不解释,得到了输入向量和训练数据点的距离矩阵。
第六行sortedDistIndicies=distances.argsort(),其中 argsort 函数用以返回排序的索引结果,直接使用 argsort 默认返回第一维的升序排序的索引结果。
然后创建一个字典。
接下来进行 k 次循环,每一次循环中,找到 i 对应的数据的标签,并将其所在字典的值加一,然后对字典进行递减的按 value 的排序。
这样循环完成后,classCount 字典的第一个值就是kNN 算法的返回结果了,也就是出现最多次数的那个标签。
二维的欧式距离公式如下,很简单:
相同的,比如说四维欧式距离公式如下:
第三步:测试分类器
在测试 kNN 算法结果的时候,其实就是讨论分类器性能,至于如何改进分类器性能将在后续学习研究中探讨,现在,用正确率来评估分类器就可以了。完美分类器的正确率为1,最差分类器的正确率为0,由于分类时类别可能有多种,注意在分类大于2时,最差分类器是不能直接转化为完美分类器的。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13