商业智能(BI)努力的是企业与数据之间的“最后一公里”,而新一代商业智能云平台要做的,则是企业和数据之间的“额外一公里”,让你跟数据的关系从0距离变成负距离。深入,再深入一点。
传统BI:企业与数据的“最后一公里”
根据Tableau发布的《2017最需关注的十大云趋势看点》,由于各种设备与云技术的发展,大量数据都能够轻松存储在云端。企业的关注点从“如何获取数据”,变成了“如何分析数据”。企业需要能够无缝连接、集成不同云托管数据的分析工具,来弥合自己与数据之间“最后一公里”的距离。
以前,企业的选择是商业智能(Business Intelligence),它可以帮助企业收集、管理和分析数据,将这些数据转化为知识或洞察(insight),然后分发到企业各处。
但是,在Gartner发布的《2017BI和数据分析软件市场统计报告》中,发现了这样的趋势:
(1)传统的商业智能平台市场占有率正在逐年降低。从2013年的49%,降至2015年的41%。而与之相反的,是新一代商业智能平台,它的市场占有率从7%上升至14%,几乎“吃”掉了传统BI失掉的所有市场。
(2)根据预测,未来10年将有更多的分析工具/商业智能产品部署于云。
究竟新一代商业智能“新”在哪儿?为什么有能力蚕食传统BI的市场?Gartner2015年提出“Modern BI Platform”这一概念时,曾经从五个方面描述了传统BI与新一代BI之间的区别:
从上图中可以看出,新一代BI最大的变化,就是把商业分析全流程的中心从专家转向了业务人员,IT部门不再是数据采集、准备与内容创作的主力或灵魂,仅在分析的流程中提供一小部分的支持工作;以前业务人员跟数据之间隔着一个IT部门,像隔着一座大山;新一代商业智能,允许业务人员直接跟数据对话、直接创建分析内容、自由的用可视化进行数据探索,还可以彼此协作。
新一代BI赋予了业务人员与数据直接对话的能力,不要小瞧这个进步。这几乎是推翻了传统商业智能的产品框架,回到“让谁用”、“怎么用”的源头,把整个工具做了一个“民主化”的革新。
民主的好处,于社会不用多言;于数据,则是弥合了从信息到行动之间的距离。对于企业来说,这就是那“额外的一公里”——发生在企业内部的、全员与数据共舞的美妙。
“额外一公里”的before我们都经历过、或正在经历着;现在,让我们来具体解释展现一下“额外一公里”的after——
* 新一代商业智能中,因为全员可以访问数据,所以无论部门、职能、级别,每个人都可以得到自己需要的数据;
* 因为全员可以自己处理数据,所以每个人都能在最短时间内得到自己想要知道的答案,节省大量与IT部门或“第三者”解释需求、等待满足的时间;
* 因为全员可以自由地对数据进行可视化的交互分析,所以任何疑问答案都是“立等可取”的,而那些常规型的报告,也不用重复制作,打开界面就可以看到了,跟数据的亲密关系又进一层;
* 因为有了“数据协作”,全员基于唯一真实的数据展开工作,部门与部门之间不再是孤岛,从彼此扔锅到展开合作,不再是梦想。
以上所有的一切,都大大缩短了从信息到行动的距离。
新一代BI为“全员数据化”赋能,还有一个利好,就是让每一个“决策者”都有据可依,要知道,这可是一个企业人人都是“决策者”的时代。美国一家上市公司是这样形容的:“每个人都在做决策。每个小时,每一天。CXO们并不是影响运营和盈利的唯一因素:几乎所有的员工都可以通过他们的工作习惯、他们使用(或滥用)的技术、对突发事件及挑战的应对方式等,对运营产生影响。事实上,‘决策者’这个术语已经可以适用于任何人。”
1936年,查理-卓别林执导并主演的《摩登时代》里,曾经把工人比作城市大机器中的一个零件,在设定好的固定程序下每天重复。今天,工业社会已发展成为信息社会,我们的工作比过去需要更多的主动与创新,但企业依旧是一个环环相扣的生产线,每一个环节都影响着企业的最终盈利,每一个环节都不容出错。
因此,我们为什么不把最适合这个时代的利器,交到每一个环节的负责人手中呢?
这就是新一代BI存在的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31