说明
随机森林是另一类可用的集成学习方法,该算法在训练过程中将产生多棵决策树,每棵决策树会根据输入数据集产生相应的预测输出,算法采用投票机制选择类别众数做为预测结果。
操作
导入随机森林包:
library(randomForest)
使用随机森林分类器处理训练数据:
churn.rf = randomForest(churn ~ .,data = trainset,importance = T)
churn.rf
Call:
randomForest(formula = churn ~ ., data = trainset, importance = T)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4
OOB estimate of error rate: 5.27%
Confusion matrix:
yes no class.error
yes 245 97 0.28362573
no 25 1948 0.01267106
利用训练好的模型对测试集进行分类预测:
churn.prediction = predict(churn.rf,testset)
类似其它分类处理,产生分类表:
table(churn.prediction,testset$churn)
churn.prediction yes no
yes 111 7
no 30 870
调用plot函数绘制森林对象均方差:
plot(churn.rf)
随机森林的均方差
根据建立好的模型评估各属性的重要度:
importance(churn.rf)
yes no MeanDecreaseAccuracy MeanDecreaseGini
international_plan 68.9592890 54.118994 72.190204 50.35584
voice_mail_plan 18.8899994 15.832400 19.607844 10.44601
number_vmail_messages 21.3080062 16.262770 22.068514 19.05619
total_day_minutes 28.3237379 30.323756 39.961077 79.91474
total_day_calls 0.6325725 -1.131930 -0.802642 20.80946
total_day_charge 28.4798708 28.146414 35.858906 77.84837
total_eve_minutes 18.5242988 20.572464 24.484322 42.99373
total_eve_calls -3.3431379 -2.301767 -3.495801 17.45619
total_eve_charge 20.4379809 20.619705 24.489771 44.02855
total_night_minutes 0.9451961 16.105720 16.694651 22.93663
total_night_calls -0.3497164 2.202619 1.869193 19.94091
total_night_charge 0.1110824 15.977083 16.593633 22.22769
total_intl_minutes 17.3951655 20.063485 24.967698 26.05059
total_intl_calls 37.3613313 23.415764 35.497785 33.03289
total_intl_charge 16.7925666 19.636891 24.498369 26.60077
number_customer_service_calls 79.7530696 59.731615 85.221845 67.29635
调用varlmPlot函数绘制变量重要性曲线
varImpPlot(churn.rf)
变量重要性示例
调用margin及plot函数并绘制边缘累计分布图:
margins.rf = margin(churn.rf,trainset)
plot(margins.rf)
随机森林算法边缘累积分布图
还可以用直方图来绘制随机森林的边缘分布:
hist(margins.rf,main = "Margines of Random Forest for churn dataset")
边缘分布直方图
调用boxplot绘制随机森林各类别边缘的箱线图
boxplot(margins.rf ~ trainset$churn,main = "Margines of Random Forest for churn dataset by class")
随机森林类别边缘箱图
原理:
随机森林算法目标是通过将多个弱学习机(如单棵决策树)组合得到一个强学习机,算法的处理过程与bagging方法非常相似,假设当拥有N个特征数为M的样例,首先采用bootstrap对数据集进行采样,每次随机采样N个样本作为单个决策树的训练数据集。在每个节点,算法首先随机选取m(m << M)个变量,从它们中间找到能够提供最佳分割效果的预测属性。
然后,算法在不剪枝的前提下生成单颗决策树,最后从每个决策树都得到一个分类预测结果。
如果是回归分析,算法将取所有预测的平均值或者加权平均值作为最后刚出,如果是分类问题,则选择类别预测众数做为最终预测输出。
随机森林包括两个参数,ntree(决策树个数)和mtry(可用来寻找最佳特征的特征个数),而bagging算法只使用了一个ntree参数,因此,如果将mtry设置成与训练数据集特征值一样大时,随机森林算法就等同于bagging算法。
本例利用randomForest包提供的随机森林算法建立了分类模型,将importance值设置为“T”,以确保对预测器的重要性进行评估。
与bagging和boosting方法类似,一旦随机森林的模型构建完成,我们就能利用其对测试数据集进行预测,并得到相应的分类表。
randomForest包还提供了importance和varlmpPlot函数则可以通过绘制平均精确度下降或者平均基尼下降曲线实现属性重要性的可视化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12