说明
随机森林是另一类可用的集成学习方法,该算法在训练过程中将产生多棵决策树,每棵决策树会根据输入数据集产生相应的预测输出,算法采用投票机制选择类别众数做为预测结果。
操作
导入随机森林包:
library(randomForest)
使用随机森林分类器处理训练数据:
churn.rf = randomForest(churn ~ .,data = trainset,importance = T)
churn.rf
Call:
randomForest(formula = churn ~ ., data = trainset, importance = T)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4
OOB estimate of error rate: 5.27%
Confusion matrix:
yes no class.error
yes 245 97 0.28362573
no 25 1948 0.01267106
利用训练好的模型对测试集进行分类预测:
churn.prediction = predict(churn.rf,testset)
类似其它分类处理,产生分类表:
table(churn.prediction,testset$churn)
churn.prediction yes no
yes 111 7
no 30 870
调用plot函数绘制森林对象均方差:
plot(churn.rf)
随机森林的均方差
根据建立好的模型评估各属性的重要度:
importance(churn.rf)
yes no MeanDecreaseAccuracy MeanDecreaseGini
international_plan 68.9592890 54.118994 72.190204 50.35584
voice_mail_plan 18.8899994 15.832400 19.607844 10.44601
number_vmail_messages 21.3080062 16.262770 22.068514 19.05619
total_day_minutes 28.3237379 30.323756 39.961077 79.91474
total_day_calls 0.6325725 -1.131930 -0.802642 20.80946
total_day_charge 28.4798708 28.146414 35.858906 77.84837
total_eve_minutes 18.5242988 20.572464 24.484322 42.99373
total_eve_calls -3.3431379 -2.301767 -3.495801 17.45619
total_eve_charge 20.4379809 20.619705 24.489771 44.02855
total_night_minutes 0.9451961 16.105720 16.694651 22.93663
total_night_calls -0.3497164 2.202619 1.869193 19.94091
total_night_charge 0.1110824 15.977083 16.593633 22.22769
total_intl_minutes 17.3951655 20.063485 24.967698 26.05059
total_intl_calls 37.3613313 23.415764 35.497785 33.03289
total_intl_charge 16.7925666 19.636891 24.498369 26.60077
number_customer_service_calls 79.7530696 59.731615 85.221845 67.29635
调用varlmPlot函数绘制变量重要性曲线
varImpPlot(churn.rf)
变量重要性示例
调用margin及plot函数并绘制边缘累计分布图:
margins.rf = margin(churn.rf,trainset)
plot(margins.rf)
随机森林算法边缘累积分布图
还可以用直方图来绘制随机森林的边缘分布:
hist(margins.rf,main = "Margines of Random Forest for churn dataset")
边缘分布直方图
调用boxplot绘制随机森林各类别边缘的箱线图
boxplot(margins.rf ~ trainset$churn,main = "Margines of Random Forest for churn dataset by class")
随机森林类别边缘箱图
原理:
随机森林算法目标是通过将多个弱学习机(如单棵决策树)组合得到一个强学习机,算法的处理过程与bagging方法非常相似,假设当拥有N个特征数为M的样例,首先采用bootstrap对数据集进行采样,每次随机采样N个样本作为单个决策树的训练数据集。在每个节点,算法首先随机选取m(m << M)个变量,从它们中间找到能够提供最佳分割效果的预测属性。
然后,算法在不剪枝的前提下生成单颗决策树,最后从每个决策树都得到一个分类预测结果。
如果是回归分析,算法将取所有预测的平均值或者加权平均值作为最后刚出,如果是分类问题,则选择类别预测众数做为最终预测输出。
随机森林包括两个参数,ntree(决策树个数)和mtry(可用来寻找最佳特征的特征个数),而bagging算法只使用了一个ntree参数,因此,如果将mtry设置成与训练数据集特征值一样大时,随机森林算法就等同于bagging算法。
本例利用randomForest包提供的随机森林算法建立了分类模型,将importance值设置为“T”,以确保对预测器的重要性进行评估。
与bagging和boosting方法类似,一旦随机森林的模型构建完成,我们就能利用其对测试数据集进行预测,并得到相应的分类表。
randomForest包还提供了importance和varlmpPlot函数则可以通过绘制平均精确度下降或者平均基尼下降曲线实现属性重要性的可视化。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16