说明
随机森林是另一类可用的集成学习方法,该算法在训练过程中将产生多棵决策树,每棵决策树会根据输入数据集产生相应的预测输出,算法采用投票机制选择类别众数做为预测结果。
操作
导入随机森林包:
library(randomForest)
使用随机森林分类器处理训练数据:
churn.rf = randomForest(churn ~ .,data = trainset,importance = T)
churn.rf
Call:
randomForest(formula = churn ~ ., data = trainset, importance = T)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4
OOB estimate of error rate: 5.27%
Confusion matrix:
yes no class.error
yes 245 97 0.28362573
no 25 1948 0.01267106
利用训练好的模型对测试集进行分类预测:
churn.prediction = predict(churn.rf,testset)
类似其它分类处理,产生分类表:
table(churn.prediction,testset$churn)
churn.prediction yes no
yes 111 7
no 30 870
调用plot函数绘制森林对象均方差:
plot(churn.rf)
随机森林的均方差
根据建立好的模型评估各属性的重要度:
importance(churn.rf)
yes no MeanDecreaseAccuracy MeanDecreaseGini
international_plan 68.9592890 54.118994 72.190204 50.35584
voice_mail_plan 18.8899994 15.832400 19.607844 10.44601
number_vmail_messages 21.3080062 16.262770 22.068514 19.05619
total_day_minutes 28.3237379 30.323756 39.961077 79.91474
total_day_calls 0.6325725 -1.131930 -0.802642 20.80946
total_day_charge 28.4798708 28.146414 35.858906 77.84837
total_eve_minutes 18.5242988 20.572464 24.484322 42.99373
total_eve_calls -3.3431379 -2.301767 -3.495801 17.45619
total_eve_charge 20.4379809 20.619705 24.489771 44.02855
total_night_minutes 0.9451961 16.105720 16.694651 22.93663
total_night_calls -0.3497164 2.202619 1.869193 19.94091
total_night_charge 0.1110824 15.977083 16.593633 22.22769
total_intl_minutes 17.3951655 20.063485 24.967698 26.05059
total_intl_calls 37.3613313 23.415764 35.497785 33.03289
total_intl_charge 16.7925666 19.636891 24.498369 26.60077
number_customer_service_calls 79.7530696 59.731615 85.221845 67.29635
调用varlmPlot函数绘制变量重要性曲线
varImpPlot(churn.rf)
变量重要性示例
调用margin及plot函数并绘制边缘累计分布图:
margins.rf = margin(churn.rf,trainset)
plot(margins.rf)
随机森林算法边缘累积分布图
还可以用直方图来绘制随机森林的边缘分布:
hist(margins.rf,main = "Margines of Random Forest for churn dataset")
边缘分布直方图
调用boxplot绘制随机森林各类别边缘的箱线图
boxplot(margins.rf ~ trainset$churn,main = "Margines of Random Forest for churn dataset by class")
随机森林类别边缘箱图
原理:
随机森林算法目标是通过将多个弱学习机(如单棵决策树)组合得到一个强学习机,算法的处理过程与bagging方法非常相似,假设当拥有N个特征数为M的样例,首先采用bootstrap对数据集进行采样,每次随机采样N个样本作为单个决策树的训练数据集。在每个节点,算法首先随机选取m(m << M)个变量,从它们中间找到能够提供最佳分割效果的预测属性。
然后,算法在不剪枝的前提下生成单颗决策树,最后从每个决策树都得到一个分类预测结果。
如果是回归分析,算法将取所有预测的平均值或者加权平均值作为最后刚出,如果是分类问题,则选择类别预测众数做为最终预测输出。
随机森林包括两个参数,ntree(决策树个数)和mtry(可用来寻找最佳特征的特征个数),而bagging算法只使用了一个ntree参数,因此,如果将mtry设置成与训练数据集特征值一样大时,随机森林算法就等同于bagging算法。
本例利用randomForest包提供的随机森林算法建立了分类模型,将importance值设置为“T”,以确保对预测器的重要性进行评估。
与bagging和boosting方法类似,一旦随机森林的模型构建完成,我们就能利用其对测试数据集进行预测,并得到相应的分类表。
randomForest包还提供了importance和varlmpPlot函数则可以通过绘制平均精确度下降或者平均基尼下降曲线实现属性重要性的可视化。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13