大数据战略、管理与生态
大数据这个话题,从西到东,从IT业内到政府官员,已经火了两年,但还没有完全一致的定义。目前业界一般认同Gartner的描述,即:凡是具有“3V”特性的数据集,就是大数据。其一为Volume,极大的数据量;其二为Variety,极复杂的数据类型与数据来源;其三为VelocITy,极高的数据产生、传播,以及反应速度。
在我看来,组织决策者要跨越大数据时代的“数据鸿沟”,就需要具备大数据战略、大数据管理和大数据生态三大能力。
大数据战略:视野,观点,价值
大数据的价值已经为电商、快消、广告等多个行业的案例所证明,但挖掘出大数据的价值并不容易。我认为,企业决策者在制定大数据战略时,需要从Vision(视野)、View(观点)、Value(价值)这“新3V”入手。
第一点从视野讲,企业CEO一定要把大数据、云计算作为企业核心战略,而不能仅仅把大数据当成是企业IT管理的一个方面。要下决心投入,无论软件方面还是硬件设施。
第二是要有企业自己的观点,即收集和处理数据的策略。例如股市,大家很多时候面对同样的数据,但是对数据的处理方式是不一样的,有些人说股市下行时候投入,有些人说股市下行时候要撤出。对同样的数据,甚至同样的软件,决策方式、观点不一样,处理结果就会大大不同,这个应该成为公司决策体系的一个核心。
第三是价值,要在确定思路后,把对数据的分析,转化为能解决实际问题的执行,从而实现大数据的价值。正如马云最近所举的例子,在淘宝上比基尼卖得最好的省份是哪儿?是内蒙古和新疆,而不是人们通常会认为的海南、广东等沿海地区。大数据能帮助人们发现事物间隐藏的内在关联,但并不意味着能直接带来社会和商业价值。如果你是泳衣、防晒霜的生产商,又会制定怎样的营销策略呢?
大数据管理:简易、开放、灵活
大数据战略重要,但更重要的是如何执行,也就是大数据管理问题。也可以通过三步走的方式来解决。首先是如何获取、存储和保护数据;其二是数据丰富,即如何清洗、发现不同数据间的数据相关性;其三是数据洞察力,即通过分析、呈现与决策工具获得洞察力,并最终通过付诸行动,产生价值。
微软的大数据管理平台,有着对大数据生命周期的全方位考虑,这也是为什么我们将Hadoop等开源架构,整合到微软的大数据平台里,一方面是将Hadoop作为对非关系型数据处理的补充;另一方面是将Hadoop作为一个服务,整合到微软的公有云与私有云平台中。值得强调的是,微软不是简单地将Hadoop迁移到微软的大数据平台上,而是真正的融合,会系统地考虑其可用性、可靠性、安全性、部署的简易性与灵活性,乃至对Hadoop上工具的集成与优化。与此同时,微软也会坚持开源的原则,将在Hadoop上做的一些研发工作回馈给社区,与社区形成良性互动。
大数据生态:平台商、数据商、开发者、数据玩家
未来的大数据生态,同样会遵循最朴素的市场规则,不同角色的组织和个人,通过逐渐成熟的交换机制,各取所需——平台商提供数据交易、数据分析的场所和基本工具。
原始数据商提供自由交易的数据集;开发者提供基于数据集的应用和服务,以及定制化的分析和呈现工具;数据玩家如同股民,在市场中寻找值得投资的数据集或者机构进行投资,获得回报;现在人们炒房、炒股、炒黄金,将来或许人们会炒数据。
微软已经通过Windows
Azure上的Marketplace在进行这样的尝试,目前主要针对的是商业用户,已经能将第三方解决方案提供商、服务提供商、模块提供商和最终的商业用户通过这一虚拟市场联结在一起,可以发起自由交易。在这个基础上,我们又延伸出一个数据集市,让数据集的拥有者可以把数据发布到集市上,提供很多很细致的数据集,小到电影院座位和路况,大到国家宏观经济发展数据。这就能让开发者可以通过微软的一些简单易用的API或者工具,把这些数据整合到自己的环境里,开发新的应用。
这样的大数据生态显然是健康、可持续的。对微软、亚马逊、谷歌、VMware这样的平台商而言,专心做好底层云计算基础架构和大数据服务平台;对淘宝、中国移动、政府各部委这样的数据商来说,原本只能自己用的数据,在这个模式下可以产生更多的社会和商业价值;对Salesforce、SAP、用友、金蝶等应用开发商来说,传统的、非常困难的、非常繁琐的数据整合,现在通过这样一个集市,可以首次实现把不同应用系统产生的数据整合起来,发现价值;对数据玩家来说,能够有一个朝阳式的投资平台可供选择,且不那么容易被大机构操纵。
当数据公开、数据交易和大数据应用成为自然而然的习惯时,或许我们才可以说,大数据时代真的来临了。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06