Python数据分析:股价相关性
为什么要分析股价相关度呢,我们来引入一个概念——配对交易
所谓的配对交易,是基于统计套利的配对交易策略是一种市场中性策略,具体的说,是指从市场上找出历史股价走势相近的股票进行配对,当配对的股票价格差偏离历史均值时,则做空股价较高的股票同时买进股价较低的股票,等待他们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
接下来开始我们的股价相关度分析,首先我们选两个股票~
感觉全聚德和光明乳业都很好吃的样子,我们就选它们了吧!= ̄ω ̄=
1、导入数据包
简单介绍一下要用到的数据包
matplotlib.pyplot:绘图库,其中pyplot子包提供一个类MATLAB的绘图框架
numpy:科学计算库,支持高级大量的维度数组与矩阵运算
pandas:纳入了大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具
tushare:财经数据接口包
[python] view plain copy
<span style="font-size:18px;">import matplotlib.pyplot as plt </span>
<span style="font-size:18px;">import numpy as np</span>
<span style="font-size:18px;">import pandas as pd</span>
<span style="font-size:18px;">import tushare as ts
</span>
2、根据全聚德和光明乳业的股票代码获取数据,这里获取的是2016年一整年的收盘价,获取完后合并,因为停牌的存在,用前一天的价格去填写缺失数据,最终以CSV格式保存数据
[python] view plain copy
<span style="font-size:18px;">s_qjd = '002186' #全聚德</span>
<span style="font-size:18px;">s_gm = '600597' #光明乳业</span>
<span style="font-size:18px;">sdate = '2016-01-01'#起止日期</span>
<span style="font-size:18px;">edate = '2016-12-31'</span>
<span style="font-size:18px;">df_qjd = ts.get_h_data(s_qjd,
start = sdate, end = edate).sort_index(axis =
0,ascending=True)#获取历史数据</span>
<span
style="font-size:18px;">df_gm = ts.get_h_data(s_gm, start = sdate,
end = edate).sort_index(axis = 0,ascending=True)</span>
<span style="font-size:18px;">df =
pd.concat([df_qjd.close,df_gm.close], axis = 1, keys=['qjd_close',
'gm_close'])#合并</span>
<span style="font-size:18px;">df.ffill(axis=0, inplace=True)#填充缺失数据</span>
<span style="font-size:18px;">df.to_csv('qjd_gm.csv')
</span>
3、用pearson相关系数计算相关度(Pearson相关系数是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。),再打印出来看一眼
[python] view plain copy
<span style="font-size:18px;">corr = df.corr(method = 'pearson', min_periods = 1)#pearson方法计算相关性</span>
<span style="font-size:18px;">print(corr)</span>
算出来有0.81,超过0.8,按值域等级来说属于极强相关,不过话说一个卖烤鸭的为什么会和卖牛奶的相关度那么高。。。。难道大家吃烤鸭的时候都喜欢喝牛奶吗。。。
4、绘制图像出来喵一眼,看看趋势上来说什么时候可以有机会做配对交易
[python] view plain copy
<span style="font-size:18px;">df.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm.jpg')</span>
<span style="font-size:18px;">plt.close()</span>
5、按分析日期的第一天的股价为基准做归一化处理,打印图像
[python] view plain copy
<span style="font-size:18px;">df['qjd_one'] = df.qjd_close / float(df.qjd_close[0])*100</span>
<span style="font-size:18px;">df['gm_one'] = df.gm_close / float(df.gm_close[0])*100</span>
<span style="font-size:18px;">df.qjd_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">df.gm_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm_one.jpg')</span>
<span style="font-size:18px;">
</span>
好啦,做完啦,虽然我也不知道为什么全聚德会和光明乳业这么高相关性
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30