谷歌教你学 AI-第六讲深度神经网络
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。今天让我们来看到第六讲深度神经网络。
观看更多国外公开课,点击"阅读原文"
回顾之前内容:
谷歌教你学 AI -第一讲机器学习是什么?
谷歌教你学 AI -第二讲机器学习的7个步骤
谷歌教你学 AI -第三讲简单易懂的估算器
谷歌教你学 AI -第四讲部署预测模型
谷歌教你学 AI -第五讲模型可视化
本期视频如下:
AI Adventures--第六讲深度神经网络
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
在本期的AI Adventures中,我们将学习如何将线性模型转换为深度神经网络,从而训练越来越复杂的数据集。
随着线性模型中特征列的数量增加,在训练实现高正确率变得越来越难,因为不同列之间的交互越来越复杂。 这是一个已众所周知的问题,对于数据科学家来说,特别有效的解决方案是使用深度神经网络。
为什么要用深度神经网络
深度神经网络能够适应更复杂的数据集,更好地推广到新数据中。由于有许多层,因此被称为”深”。 这些层能让它们比线性模型,更能适应复杂的数据集。
然而值得权衡的是,若用到深度神经网络,模型则需要更长的训练时间,规模也更大,解释性更低。 那么为什么要用呢?
因为这会带来更高的正确性。
深度学习一个棘手的方面是:要让所有参数“恰到好处”。
根据数据集,这些配置看几乎是无限制的。 但是,TensorFlow内置的Deep Classifier和Regressor提供了一些合理的默认值,你可以立即开始使用,从而快速轻松地进行操作。
从线性到深度
我们来看一个例子,如何将鸢尾花的例子从线性模型更新到深度神经网络(通常缩写为DNN)。
我不打算展示DNN处理的2000列模型…因此我只打算使用我们之前用到的4列模型。当中的机制都是一样的。
主要的变化来自于用DNN分类器替换线性分类器。 这将为我们创建一个深度神经网络。
其他变化
其他的内容几乎都保持不变!深度神经网络还需要一个额外的参数,这是之前我们没有涉及的。
由于深层神经网络有多个层,每层有不同数量的节点,我们将添加一个`hidden_units`参数。
`hidden_units`能够让你为每个图层提供有具有节点数量的数组。这能让你在创建神经网络时,只需考虑它的大小和形状,而不是从头考虑方方面面。添加或删除层就像在数组中添加或删除元素一样简单!
更多的选择
当然,对于任何预先构建的系统,这确实很方便,但是往往缺乏可定制性。 DNN分类器通过让你选择许多其他参数来解决这个问题。有些合理的默认值会被使用 。 例如,优化器,激活函数和退出率都等都可以自定义。
将模型从线性转换为深度,还需要做些什么?
没了!
这就是使用估算器框架的美妙之处。这是整理数据、训练、评估和模型导出的一种常见方式,同时还可以灵活地尝试不同的模型和参数。
深度神经网络,让问题更简单
有时,深度神经网络效果要优于线性模型。在这种情况下,通过使用估算器框架替换一个函数,TensorFlow可以轻松地从线性模型切换到深度模型,而只需要更改少数的代码。
这意味着你能够用更多的时间来处理数据、模型和参数,而不是反复进行训练循环。对于简单的深度神经网络问题,快使用TensorFlow估算器吧!
下期预告
当训练数据太大,我们的机器无法承载;或者训练模型需要好几个小时,那么是时候考虑其他的选择了。下一期我们将降到在云端训练大数据模型。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20