新年伊始 大数据仍面临重重考验
大数据从“概念”走向“价值”,基于大数据的推荐与预测逐步流行,数据科学将兴起,安全与隐私成为重要问题,大数据产业成为战略性产业——这是中国计算机学会大数据专家委员会对“大数据”2018年十大趋势预测中的内容。在这份预测中,还包括数据商品化与数据共享联盟化,大数据生态环境逐步发展等。“大数据”从2012年预热,到被各行各业所提及,各种舆论声音纷杂,有人认为这是一个机遇,也有人认为这会是一场“泡沫”。2018年,大数据将面临的问题有哪些?
数据开放仍是大问题
数据应用的前提是数据开放,这已经是共识。中国工程院院士、中国互联网协会理事长邬贺铨指出,中国人口居世界首位,但2010年中国新存储的数据为250PB,仅为日本的60%和北美的7%。目前我国一些部门和机构拥有大量数据但宁愿自己不用也不愿提供给有关部门共享,导致信息不完整或重复投资。2012年中国的数据存储量达到64EB,其中55%的数据需要一定程度的保护,然而目前只有不到一半的数据得到保护。
孙九林介绍了美国在数据开放方面的做法。美国政府提供政策和经费保障,使数据信息中心群成为国家信息生产和服务基地,保障数据信息供给不断,利用网络把数据和信息最便捷、及时地送到包括科学家、政府职员、公司职员、学校师生在内所有公民的桌上和家庭中,把全社会带进了信息化时代。
“让每一位公民在数据、信息、知识、理论、决策、效益的各个环节上发挥才华,让民众把数据信息流动过程中和应用过程中的各种价值充分挖掘出来,国家为他们才华的发挥和价值的挖掘带好路、服务好、创造好环境。”孙九林认为这就是美国政府选择的数据信息共享的“大循环”道路。该思路在利益分配上的基本点就是让全社会受益,让整个国家受益。
目前,我国还没有国家层面的专门适合数据共享的国家法律,只有相关的条例、法规、章程、意见等。
针对于大数据利用的前端——数据共享的问题,孙九林认为,十多年的数据共享取得了很大的成效,特别是全社会的共享理念得到共识,但存在的问题仍然很突出:缺少国家层面的政策,已有分散的若干意见约束力不够,高层管理人员对数据开放共享的深刻意义的认识有待提高;现有国家数据共享平台难以满足国家发展和科技创新对数据资源的需求;缺少数据开放共享的专职队伍和相应的数据专家以及管理人才;缺少对专职数据共享服务人员的合理评价机制和标准等等。
急需“国家大数据战略”宏观统筹
“不要被大数据(Big Data)的 Big 误导,大数据更强调的不是数据大,而是数据挖掘。”在第十届国家信息化专家论坛上,邬贺铨院士指出,大数据需要更强调数据挖掘利用,关键的是要有国家大数据战略。
邬贺铨提出,需要制定国家大数据发展战略,大数据是一个应用驱动性很强的服务,其标准和产业格局尚未形成,这是我国跨越发展的机会,但切忌一哄而起在目的不明的情况下到处建设大数据中心,到处搞“数据房地产”,而是需要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手。同时,我国需要尽快制定“信息保护法”和“信息公开法”,既要鼓励面向群体而且服务于社会的数据挖掘,又要防止针对个体侵犯隐私的行为,提倡数据共享又要防止数据被滥用。
中国计算机学会专家委员会指出:大数据时代有两点非常有利于中国信息产业的发展,第一是大数据技术发开源为主,迄今为止没有形成技术垄断;第二点,中国的人口和经济规模决定了中国的数据资产规模全球最大。因此,政府、学界、产业界和资本市场应该通力合作,在确保国家数据安全的前提下,最大程度地开放数据资产,释放大数据的巨大价值。
目前已经有一批企业开始用数据创业。在国外已经有不少用数据提供服务、做数据分析、进行可视化研究的公司,有些已经取得不错的业绩,甚至有很好的前景而拒绝大公司收购。有人预测,如果国内互联网创业者,能从海量的“垃圾”信息中嗅出些端倪,找到某个切入点,没准能成为行业的佼佼者。不过,现在在国内找出个像样的“大数据”初创公司并非易事;但也有人认为,正是有这样的空白存在,才让人看到机遇
各国大数据人才紧缺
大数据人才无疑是紧缺人才。Gartner咨询公司预测,大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预计,美国到2018年深度数据分析人才缺口将达14万~19万人,能够分析数据帮助公司获得经济效益的技术及管理人才有150万人的缺口。中国能理解与应用大数据的创新人才更是稀缺资源。
大数据专家委员会认为,从目前各国的人才培养来看,数据科学家应掌握数学、统计学、数据分析、商业分析和自然语言处理等学科技能,具有较宽的知识面,具有独立获取知识的能力。复旦大学的课程设置强调了数据科学家是研究数据的科学家,而不仅仅是一个数据工程师或者数据分析师。
数据分析咨询请扫描二维码
数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03