Python中进程和线程的区别详解
这篇文章主要介绍了Python中进程和线程的区别详解,需要的朋友可以参考下
Num01–>线程
线程是操作系统中能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。
一个线程指的是进程中一个单一顺序的控制流。
一个进程中可以并发多条线程,每条线程并行执行不同的任务。
Num02–>进程
进程就是一个程序在一个数据集上的一次动态执行过程。
进程有以下三部分组成:
1,程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成。
2,数据集:数据集则是程序在执行过程中需要的资源,比如图片、音视频、文件等。
3,进程控制块:进程控制块是用来记录进程的外部特征,描述进程的执行变化过程,系统可以用它来控制和管理进程,它是系统感知进程存在的唯一标记。
Num03–>进程和线程的区别:
1、运行方式不同:
进程不能单独执行,它只是资源的集合。
进程要操作CPU,必须要先创建一个线程。
所有在同一个进程里的线程,是同享同一块进程所占的内存空间。
2,关系
进程中第一个线程是主线程,主线程可以创建其他线程;其他线程也可以创建线程;线程之间是平等的。
进程有父进程和子进程,独立的内存空间,唯一的标识符:pid。
3,速度
启动线程比启动进程快。
运行线程和运行进程速度上是一样的,没有可比性。
线程共享内存空间,进程的内存是独立的。
4,创建
父进程生成子进程,相当于复制一份内存空间,进程之间不能直接访问
创建新线程很简单,创建新进程需要对父进程进行一次复制。
一个线程可以控制和操作同级线程里的其他线程,但是进程只能操作子进程。
5,交互
同一个进程里的线程之间可以直接访问。
两个进程想通信必须通过一个中间代理来实现。
Num04–>几个常见的概念
1,什么的并发和并行?
并发:微观上CPU轮流执行,宏观上用户看到同时执行。因为cpu切换任务非常快。
并行:是指系统真正具有同时处理多个任务(动作)的能力。
2,同步、异步和轮询的区别?
同步任务:B一直等着A,等A完成之后,B再执行任务。(打电话案例)
轮询任务:B没有一直等待A,B过一会来问一下A,过一会问下A
异步任务:B不需要一直等着A, B先做其他事情,等A完成后A通知B。(发短信案例)
Num05–>进程和线程的优缺点比较
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。
Num06–>计算密集型任务和IO密集型任务
是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。
第一种:计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种:任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
总结
以上所述是小编给大家介绍的Python中进程和线程的区别,希望对大家有所帮助
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20