对付大数据的小伎俩
大数据是当前的热门话题。各行各业,到处都有人谈论大数据。就人的基因来说,大数据这部“天书”总共30亿个字。在检验过程中,为了不看走眼大数据,保证结论准确可靠,惯例是每一个字检验30次以上。因为30亿的数据量实在太大,需要通过相当程度的重复来排除错误。为了把一个人的基因通读一遍,得念1000亿个字,真真的就是大数据。
先不说如何分析、解读这部书,如何理解全书或者它的某些章节、段落的含意。挖掘大数据所蕴含的宝藏是一个难题。生物信息学是当今的热门专业,非常抢手。我们只看第一步,生物学家要动用什麽样的心思和手段,才能把这套数据拿到手。
基因技术上的改进共有3次,但是远远没有到达终点。
最初的技术,一次只能读100个字。100对1000亿,那是愚公移山。於是人们着手改进技术,增加长度。成就也不能说没有,终於可以从100个读到1000个了,手工操作也改成机器自动化了。十年过去,提高了十倍。然而,1000是该技术的极限,再也难以延长。
这时,有人想到了把基因分成小组。大数据不好对付,分班分组可以减轻负担。首先把基因切断成大片段,再想办法将这些大片段复制几万份,满足后续操作需要;然后分头检测各个片段。拿到数据后,先把大片段组装出来,作为骨架;再用骨架搭出整个基因组。
这里头的每一步都是可以做到的,人们努力的方向自然而然就从增加读长改成了增加基因片段的长度。增加长度很容易,但是长片段的复制是一个问题,操作繁琐,速度简直就是乌龟爬。
面对这种窘境,文特尔想起了猎鸟。身处旷野,鸟儿的个头实在是太小了。它们飞在空中,即使看见了,打下来也不容易。霰弹枪是对付飞鸟的有效武器。一打一片,碰到鸟儿的机会比较多。基因散布在数据的汪洋大海中,要抓住同样不容易。也许霰弹枪也是对付基因的一个办法?文特尔的想法是跳过困难的长片段复制,把基因打成更短的片段,直接测序。短片段的复制比较容易,好比霰弹;短片段拼基因组,好比拼图游戏。
突然有人提出这样的胡思乱想,冀求朝天胡乱放一枪就碰到个把基因,完全不被看好。鸟枪法遭致一片反对。由於申请不到经费,文特尔干脆自己动手,成立了一家公司,与官方研究机构展开竞赛。他们很快就测定了果蝇和人类的基因,速度之快,可比兔子。号称可以与阿波罗登月计划相媲美的人类基因组计划,在鸟枪法加入竞争之后,迅速完成了。当美国总统宣布该计划完工的时候,当初申请不到经费的人也站在克林顿旁边。
从此,所有人都倒向鸟枪法。
每次只拿一条序列,速度还是成问题。人基因组计划历时10年,光文特尔的私人公司就花了10亿美金,只测出一个人的基因。还有谁能付得起这样的代价呢?於是,提高规模就成了紧迫的任务。如果一次检验能拿到几百万条序列,读基因不就像读小说了吗?这一看似不可能的梦想,人们还真的通过平行测序做到了。但是任何事情都有两面。为了实现超大规模,就不得不牺牲长度,由1000倒退回100。新技术刚起步的时候还要短,只有区区35个字,简直令人齿冷。尽管长度短,数据总量却不少,是原来的6百万倍。靠长度35的片段居然能拼出基因组,不能不令人惊叹。基因技术终於跨出了一大步,被尊为第二代。
官二代、富二代,都不如基因技术第二代。这一跨越留给人们的印象实在太深了,流风余韵,以至今天,尽管二代技术的长度能轻松达到两三百,还是经常有人问:你们还做35吗?
片段化看似笨拙、凌乱,没有效率,却是快刀斩乱麻地解决复杂问题、对付大数据的不二法门。我们做美味的狮子头,要把五花肉乱刀剁碎。被剁碎的基因组,味道也很鲜美。
创新没有止境。新技术虽然大获成功,但是读长实在短了点,对不住人,数据组装相当吃力。那是用筷子拼出京广线的活儿,计算机都是一屋子、一屋子地摆着,蔚为壮观,也令人望洋兴叹。如何提高效率呢?人们又想起了基因分组的老黄历。把基因切成大片段后,分别做好标记,各自处理成二代测序所要求的长短,再混合起来一起测序。在数据组装的时候,先按记号分别组装,形成骨架,再用骨架进行第二轮组装。本来一步完成的任务,现在分成两步,计算机的负担大大降低。想出这个金点子的人也成立了一家公司,总共只有6名员工。小公司被大公司收购,花费1.6亿美元。
看完近30年来基因技术的发展历程,你也许很不服气:这算什麽,也不过大虫拿人,只是一扑、一掀、一剪;对付基因组,只有延长、分组、拼图三招,程咬金的三板斧,来回折腾。是的,治大国若烹小鲜,对付大数据,要用小片段。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10