Python中xrange与yield的用法实例分析
本文实例分析了Python中xrange与yield的用法。分享给大家供大家参考,具体如下:
range和xrange
Python提供了生成和返回整数序列的内置函数range及xrange,虽然这两个函数在功能上是差不多的,但其实现原理还是有差别的。range(n, m)返回的是一个从n到(m-1)的连续的整数列表,而xrange(n, m)返回的却是一个特殊的目的对象,即xrange对象本身.
>>> range(1, 5)
[1, 2, 3, 4]
>>> xrange(1, 5)
xrange(1, 5)
>>> type(xrange(1, 5))
<type 'xrange'>
但在python2.x中xrange返回的却不是一个迭代器,所以 x = xrange(n, m), x.next()会出错。假如需要返回一个迭代器,需要调用iter(xrange(….))
>>> x = iter(xrange(1, 5))
>>> x.next()
1
>>> x.next()
2
也就是,调用range和xrange程序在运行中占用的内存是不一样的。使用range,程序将首先生成一个list,然后再隐含调用list的iter获取元素。而使用xrange,程序在每次循环产生的是一个xrange对象,这个对象是iterable,根据返回的这个xrange对象我们可以获取元素。
生成器与yield
借助python的生成器,我们可以实现像内置xrange函数的生成器,但这个生成器返回的是一个又浮点型值组成的序列而不是整型序列。
>>> def frange(start, stop, step=1.0):
while start < stop:
yield start
start += step
>>> frange(1.0, 5.0)
<generator object frange at 0x01343148>
>>> for i in frange(1.0, 5.0):
print i,
1.0 2.0 3.0 4.0
>>> x = iter(frange(1.0, 5.0))
>>> x.next()
1.0
>>> x.next()
2.0
在python中,在函数体出现一个或者多个yield,这个函数就是生成器(generator)。在调用生成器的时,系统不会执行该生成器函数体。生成器被调用时将返回一个特殊的迭代器对象,这个个对象包含了生成器函数体、函数体的本地变量(包括函数体参数)以及当前的执行位置。
在调用返回的迭代器对象的next方法时,生成器将执行到下一个yield语句。
在执行完yield语句时,函数的执行将被“冻结”,保留执行的当前位置和未经使用的本地变量,并将yield语句的执行结果返回作为next方法的结果。继续调用next则继续调用yield,直到函数体运行结束或者执行了return语句(return语句不能含有表达式)。
最常见的,生成器可以用来构建迭代器。假如我们需要一个从1到N,然后从N到1的数字组成的序列,可以使用生成器:
>>> def updown(N):
for x in xrange(1, N): yield x
for x in xrange(N, 0, -1): yield x
>>> for i in updown(5):
print i,
当一个函数需要返回一个列表的时候,使用生成器可能更灵活。生成器可以构建一个误解的迭代器,返回一个无限的结果序列。更进一步,生成器构建的迭代器执行的是懒计算:只有函数需要时才会计算结果。
所以假如需要对一个序列进行迭代功能,可以考虑迭代器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06