大数据驱动创新思维
大数据时代的变革重要的并不是升级现有逻辑,而是需要创造一种新的逻辑。正如外军研究所强调,大数据时代所需要创造的逻辑,关键是需要人们在通常状态下开动左脑的同时,来充分唤醒沉睡的右脑,激发创新思维。
作为继云计算、物联网之后IT产业又一次颠覆性新技术革命,大数据不但越来越多地被人们提及和广泛运用,而且成为影响当今世界科技创新、国家安全战略以及新军事变革极为重要的知识增长点。据外媒披露,截至2012年底,全球互联网总数据存储量已达160亿TB以上,并且正以59%以上年增长率在高速增长。外电有评论指出,现在每日遍布世界各个角落的传感器、移动设备、在线交易等生成的海量数据昭示世人:人类已加速步入“大数据时代”。
在军事领域,大数据更是独具“翻江倒海”之能。因为无处不在的海量数据是一座宝库,打开这座宝库从中可以找到许多有价值的数据,通过分析发现规律,就能够获取高价值的信息,从而作出重要决策,把握变幻风云,这也正是大数据的军事价值。击毙本?拉登让美国的“海豹”突击队着实吸引了世人目光,然而外军深入研究后才知道,发现本?拉登靠得则是数千名数据分析员长达10年对海量信息的分析,所以国际上也有“数据抓住了本?拉登”之说。
无独有偶。前不久,在美俄达成有关叙利亚化武换和平协议之时,美情报机构详细列出了叙数十项化武生产、储藏地点清单,而能够发现和锁定这些目标,大都是基于美卫星数据情报和分析员的解析。专家告诫,驾驭未来战争,决不可忽视没有硝烟的大数据战场。
现代科学研究表明,人脑构造主要由左右两个半脑组成,它们各有明确的分工,左脑主要完成语言、逻辑等认知与行为,而右脑则具有艺术创作、发明创造以及整体性思维的能力,蕴藏着发散思维、逆向思维、关联思维等非常规的思维潜质,正是这里迸发着无穷的创造活力。
历史上,善于激发右脑潜能的成功典范俯拾即是。着名科学家爱因斯坦曾经说:“我思考问题时,不是用语言进行思考,而是用活动的跳跃的形象进行思考。当这种思考完成以后,我要花很大力气把它们转换成语言。”另一位科学家笛卡尔更是强调:“没有图形就没有思考。”1940年,善用右脑功能的丘吉尔下令撤出在法英军,成就了二战经典——代号“发电机计划”的敦刻尔克大撤退。福特善于发挥右脑深度潜能,在重大经营项目上时常作出创造性决策,终成享誉世界的“汽车大王”;乔布斯从不追捧市场,强调产品内外极致追求的他,成就了“苹果”的辉煌。所以,在当今的信息网络时代、在智慧地球的创新时代,我们切莫丧失了右脑思维的跳跃性、形象性和创造性。
外军研究表明,开发右脑功能,可以在设计感、故事感、娱乐感以及交响能力、舆情能力、探寻能力等6种能力方面作出新探索。最新研究昭示我们,面对大数据时代的挑战,必须善于全面把握信息化战场联合作战多源目标感知的特殊性,不断增强实时动态的数据处理能力,充分发掘右脑蕴藏的创造性能量,把大数据转化为可供决策的创造力,让能打仗、打胜仗的设计图景与打赢信息化战争的实战图景实现完美的结合。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21