国内普遍认可的数据分析师认证,持证者前景一片蓝海
技术爆炸,一日千里,小到网络搜索,大到人工智能,数据分析已渗透在社会的方方面面。2017年,国内有两份关于大数据人才的专业报告很好的反映了数据人才的稀缺性与重要性。
《大数据人才报告》中显示,目前全国的大数据人仅46万,未来3-5年缺口将高达150万。《2017中国大数据及AI人才发展报告》中体现了大数据人才企业招聘人数猛增6倍,平均固定年薪达38万。
在国外,美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期重要报告中也体现,仅约23%的毕业生掌握了数据科学与数据分析技能,而69%的雇主希望求职者具备数据分析技能。
2018年,随着AI与区块链泡沫的出现,大数据技术显得更为靠谱,更接地气,更加务实。人人都应具备数据分析能力,现入行数据分析职业为时不晚、恰逢其时。
(图片来源:《2017中国大数据及AI人才发展报告》)
人才稀缺,面对激烈的竞争环境,企业对数据人才的要求也更为苛刻。《CDA数据分析师人才标准大纲》自2013年以来,从1.0到2.0版本,经历了企业的实践与市场的检验,为步入数据分析领域的新人和不断成长晋升的业内人士,做着标杆性的引导与认可。
2018年,《CDA数据分析师人才标准大纲》经过CDA Institute、CDMS与经管之家CDA数据分析研究院反复研究与打磨,经过来自业界和学界的专家学者组成的CDA教研团队与命题委员会逐条审核与修改,更新为了3.0版本。
最新(第八届)CDA认证大纲更加贴近商业数据分析应用,更加强调理论与实践的结合,满足了时代对新型数据分析人才的要求,让CDA持证者在企业工作与职业发展中更具竞争力。
CDA考试大纲是CDA命题组基于CDA数据分析师等级认证标准而设定的一套科学、详细、系统的考试纲要。考纲规定并明确了CDA数据分析师认证考试的具体范围、内容和知识点。本次3.0大纲调整了部分知识模块的比例,在领悟、熟知、应用三个层次细化了知识点的说明,特别是在应用部分增加了考生对于具体业务场景的运用要求。
在LEVEL 1数据建模分析模块的聚类分析部分,结合了客户画像、客户细分、商品聚类、离群值检验(欺诈、反洗钱)等业务运用场景。在对应分析部分增加了客户满意度分析、市场绩效及产品细分等场景下的运用。另外还强调了考生解读数据的能力和撰写数据报告的能力等等。详细更新点可见第八届CDA数据分析师认证考试大纲内容。
CDA认证符合实际、贴近前沿、品质规范。越来越多的CDA学员及持证人走向世界各地,企业招募人才供不应求,CDA数据分析师品牌得到了来自学界与实业界的教授、专家、从业者的口碑相传,国内外各行业的企业、单位、机构的接纳认可。
随着德勤(Deloitte)将CDA认证纳入员工手册,作为员工技能的要求之一;随着中国电信、苏宁等企业引进CDA人才参考标准,在企业内部进行CDA认证考试。CDA认证不断受到市场的考验,成为了大数据及数据分析领域通用人才专业名词,逐步走向行业标杆。
CDA数据分析师持证人大多就业于各行业数据分析专业岗位,如:业务数据分析师,数据挖掘工程师,建模分析师,大数据分析师,大数据工程师,首席数据官等职位。就业企业包括中国银行、IBM、联想、移动、华为、尼尔森、市级政府部门等数千家企业,CDA持证人在企业专业数据分析岗位上得到了普遍认可。
未来是大数据、人工智能、区块链等高新技术不断发展的年代,企业对于大数据及数据分析人才的需求和要求会越来越高,CDA将与时俱进,不断迭代,不断引进前沿技术,丰富教学资源,更新体系标准,极力推动大数据及数据分析的人才建设和发展。相信,CDA在数据分析人才教育领域的努力,会让更多人了解数据分析,学会数据分析;让更多业内人士能在DT时代成为更具竞争力的新型抢手人才;让企业更快速高效的找到的更适合自身需要的数据分析人才。CDA数据分析师的前景将是一片蓝海。
第八届CDA数据分析师认证考试报名已开放!
大纲下载地址:https://www.cda.cn/view/3.html(页面中部)
CDA认证报名通道(阅读原文):http://exam.cda.cn/
加入CDA认证考试交流群!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20