漫画图解:什么是区块链
什么是区块链?
区块链,英文 Blockchain,本质上是一种去中心化的分布式数据库。任何人只要架设自己的服务器,接入区块链网络,都可以成为这个庞大网络的一个节点。
区块链既然本质是数据库,里面究竟存储了什么东西呢?让我们来了解一下区块链的基本单元:区块(Block)。
一个区块分为两大部分:
1.区块头
区块头里面存储着区块的头信息,包含上一个区块的哈希值(PreHash),本区块体的哈希值(Hash),以及时间戳(TimeStamp)等等。
2.区块体
区块体存储着这个区块的详细数据(Data),这个数据包含若干行记录,可以是交易信息,也可以是其他某种信息。
刚才提及的哈希值又是什么意思呢?
想必大家都听说过MD5,MD5就是典型的哈希算法,可以把一串任意长度的明文转化成一串固定长度(128bit)的字符串,这个字符串就是哈希值。
而在我们的区块链中,采用的是一种更为复杂的哈希算法,叫做SHA256。最新的数据信息(比如交易记录)经过一系列复杂的计算,最终会通过这个哈希算法转化成了长度为256bit的哈希值字符串,也就是区块头当中的Hash,格式如下:
a8fdc205a9f19cc1c7507a60c4f01b13d11d7fd0
区块与Hash是一一对应的,Hash可以当做是区块的唯一标识。
不同的区块之间是如何进行关联的呢?依靠Hash和PreHash来关联。每一个区块的PreHash和前一个区块的Hash值是相等的。
为什么要计算区块的哈希值呢?
既然区块链是一个链状结构,就必然存在链条的头节点(第一个区块)和尾节点(最后一个区块)。一旦有人计算出区块链最新数据信息的哈希值,相当于对最新的交易记录进行打包,新的区块会被创建出来,衔接在区块链的末尾。
新区块头的Hash就是刚刚计算出的哈希值,PreHash等于上一个区块的Hash。区块体的Data存储的是打包前的交易记录,这部分数据信息已经变得不可修改。
这个计算Hash值,创建新区块的过程就叫做挖矿。
用于进行海量计算的服务器,叫做矿机。
操作计算的工作人员,叫做矿工。
计算哈希值究竟难在哪里?咱们来做一个最粗浅的解释,哈希值计算的公式如下:
Hash = SHA-256(最后一个区块的Hash + 新区块基本信息 + 交易记录信息 + 随机数)
其中,交易记录信息也是一串哈希值,它的计算涉及到一个数据结构 Merkle Tree。有兴趣的小伙伴可以查阅相关资料,我们暂时不做展开介绍。
这里关键的计算难点在于随机数的生成。猥琐的区块链发明者为了增大Hash的计算难度,要求Hash结果的前72bit必须都是0,这个几率实在是太小太小。
由于(最后一个区块的Hash + 新区块基本信息 + 交易记录信息)是固定的,所以能否获得符合要求的Hash,完全取决于随机数的值。挖矿者必须经过海量计算,反复生成随机数进行“撞大运”一般的尝试,才有可能得到正确的Hash,从而挖矿成功。
同时,区块头内还包含着一个动态的难度系数,当全世界的硬件计算能力越来越快的时候,区块链的难度系数也会水涨船高,使得全网平均每10分钟才能产生出一个新区块。
小伙伴们明白挖矿有多么难了吧?需要补充的是,不同的区块链应用在细节上是不同的,这里所描述的挖矿规则是以比特币为例。
区块链的应用
比特币(BitCoin)的概念最初由中本聪于2008年提出,而后根据这一思路设计发布了开源软件以及建构其上的P2P网络。比特币是一种P2P形式的数字货币。点对点的传输意味着一个去中心化的支付系统。
什么是P2P网络呢?
传统的货币都是由中央银行统一发行,所有的个人储蓄也是由银行统一管理,这是典型的中心化系统。
而比特币则是部署在一个全世界众多对等节点组成的去中心化网络之上。每一个节点都有资格对这种数字货币进行记录和发行。
至于比特币底层的数据存储,正是基于了区块链技术。比特币的每一笔交易,都对应了区块体数据中的一行,简单的示意如下:
交易记录的每一行都包含时间戳、交易明细、数字签名。
表格中只是为了方便理解。实际存储的交易明细是匿名的,只会记录支付方和收款方的钱包地址。
至于数字签名呢,可以理解为每一条单笔交易的防伪标识,由非对称加密算法所生成。
接下来说一说比特币矿工的奖励:
比特币协议规定,挖到新区块的矿工将获得奖励,从2008年起是50个比特币,然后每4年减半,目前2018年是12.5个比特币。流通中新增的比特币都是这样诞生的,也难怪大家对挖掘比特币的工作如此趋之若鹜!
区块链的优势和劣势
区块链的优势:
1.去中心化
区块链不依赖于某个中心节点,整个系统的数据由全网所有对等节点共同维护,都可以进行数据的存储和检验。这样一来,除非攻击者黑掉全网半数以上的节点,否则整个系统是不会遭到破坏的。
2.信息不可篡改
区块内的数据是无法被篡改的。一旦数据遭到篡改哪怕一丁点,整个区块对应的哈希值就会随之改变,不再是一个有效的哈希值,后面链接的区块也会随之断裂。
区块链的劣势:
1.过度消耗能源
想要生成一个新的区块,必须要大量服务器资源进行大量无谓的尝试性计算,严重耗费电能。
2.信息的网络延迟
以比特币为例,任何一笔交易数据都需要同步到其他所有节点,同步过程中难免会受到网络传输延迟的影响,带来较长的耗时。
几点补充:
1.本漫画部分内容参考了阮一峰的博文《区块链入门教程》,感谢这位大神的科普。
2.由于篇幅有限,关于Merkle Tree 和 非对称加密 的知识暂时没有展开细讲,有兴趣的小伙伴们可以查阅资料进行更深一步的学习。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21