浅析预测分析注定失败的思考方式
虽说预测分析是一项很得人心的技术,每个人都希望能通过使用预测分析方法和预测分析工具,从而可提前看到未知的结果,来避免失败,但如果没有做好准备,信手拈来的使用预测分析方法,那必将失败。无论对于预测分析是你新手菜鸟,还是已经进行了大量的预测分析项目,都非常容易犯错。
数据挖掘公司Elder Research的CEO John Elder说:“大量的分析项目中都充斥着各种各样的错误。”这些错误大都不是致命的,通过模型即改善,但是也一些项目是相当地失败,致使业务在软件在投资的大量的金钱和时间,但却没有任何收益。本文列出了预测分析注定失败的思考方式。
1.开始后没有假定结果
对于预测分析大家都很兴奋,你看到了它的潜在价值。但却有一个问题:你的心中没有一个特定的目标。
Elder
Research参与的一个大公司中就有这样的情况。该公司开始使用他们的数据进行预测一些事情,或所有的事情,即一个方管可以出去向他的业务单元销售。虽然研究机构同意与他合作,并为他量身定制了一个使用模型,但由于这个业务单元中没有一个人问题他将要销售什么,最后该项目就没有了方向。
教训:不要先做锤子,再找钉子。在开始之前,一定要有一个特定的目标。
2.在数据不支持的基础上定义项目
一个债务催收公司希望找出最有效的方法来促使欠债人员还债。挑战是:该公司已经有一套严格的规则了,而且在每一个案例中都遵循这套原则。
数据挖掘是一项对比的艺术。因为该公司有了一套成熟的原则并一直遵循着,所以他们并不知道哪一种结果更有利于回收债务。所以该公司需要一些历史性的例子。
如果你没有这些案例,那么就需要创建一系列的实验来收集数据了。例如,假设有欠债人有1,000人,500人收到的了恐吓信,而另外500人得到的是电话催债,这是第一步。然后,预测模型就可以进行预测,预测哪类欠债人会更好的对恐吓信进行反应,哪类会更好的对电话进行反应。
在些案例中,欠债人类型可能包括历史模式引发的债务、按天支付过去的债务、收入、邮政编码的住宅等等。基于预测模型,这一催债机构可能会更好的使用更有经济效益的策略,而不是对所有人使用同一策略。但你要从实验开始。无中生有,对于预测分析来说是不可能的。
3.在得到最好数据之前就不前行
人们常常误解下操作:他们必须使数据完美地组织,没有任何漏洞、障碍或缺失的价值,在这之后才会进行预测分析。
Elder Research的一个客户,一个跨国石化公司刚刚开始进行预测分析项目,期望有更大的投资回报率,但这时他们的数据科学家发现现有的运营数据比他们原本想象的还要糟糕。
在此案例中缺失了一个最关键的目标价值。在使业务等待收集新数据时,该项目可能会延迟至少一年的时间。大部分公司在这里停滞不前。与其它错误相比这一错误是项目的最在杀手。
4.评估数据质量时,不清除垃圾数据
一个财富1000的金融服务公司想预测哪个客服中心的员工将会工作的时间最长。乍一看,该公司的历史数据似乎表明没有高中文凭、在公司停留至少9个月的员工数据是其它教育背景的员工有2.6倍。咨询公司建议客户从优先招聘高中辍学生开始。
但这就出现了两个问题。首先从求职者的简历中手动键入的数据已经做了不一致的标记。一条数据检查所有教育层次的人们,另一个只检查完成了高水平教育的人。
另一个更加复杂的问题是:因为某些原因,在呆的时间最长的人的简单中所有的标记中,后者比前者多。通过确保所做的标记是随机键入的一组简历,而且每一个人都使用同一种标记法,就可以以免这些问题。
在这一案例中我们得到一个最的信息就是:“只有垃圾在,才会有垃圾清理。在确保数据质量之间一定要确保数据的完整性。”
5.从未来的数据中预测未来
伴随着数据仓库的一个问题是它们并不静止的:信息一直在变,一直在更新。但预测分析是一种归纳的学习过程,它依赖于对历史数据,或“训练数据”的分析来创建模型。所以你要重新数据在客户生命周期初始阶段的状态。如果数据没有标注日期和时间戳,这很容易就会引进产生错误结果导向的未来数据。
有一件发生在汽车俱乐部的事:该俱乐部着手建立一个模型,用于预测他们的哪类会员更有可能购买他们的保险产品。为了建模,该俱乐部需要重建他们之前数据集合,把会员购买和决定购买保险产品的时间优先级提前,而且还要包含进子数据。该组织建立了一个决策树,它包括一个含有电话、传真和邮件数据的文本变量。当这一变量中包含了任何文本,那么就可以百分之百确定这些会员不久后就购买这一保险。
该项目的一个负责人说我们确信这个指示器将会在会员购买保险之前进行提示,但汽车俱乐部的员工却不能告诉我们它意味着什么。提前知道简直令人难以置信,他继续提问直到找到组织中知道事实的人:该变量代表着会员是如何取消他们保险的——通过电话、传真或者邮件。他说你不买就没有取消一说
。所以当你进行建模时,你必须锁定一些你的数据。
总结:失败只是一个选择
看了这些事例,你可能会把预测分析想象的非常困难,但不要害怕。虽然你在预测分析的路上出现了很多错误,但同时你也在学习,在调整,这是值得的。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13