大数据发展五大关键要素
目前,大数据正成为推动企业效率提升和管理变革的强大力量,一些企业正利用互联网与物联网等带来的海量数据,通过挖掘、分析与业务应用,赢得优势。它正成为经济繁荣的催化剂,在美国,大数据已经被提到了国家战略的高度。但如何发展大数据呢?从新加坡的经验来看,政府在其中起到关键性的作用。
新加坡政府抓住了大数据发展的五大关键要素:基础设施、产业链、人才、技术和立法。它在其中发挥了关键角色,尤为值得一提的是,这五个要素是普通企业所做不到的,而新加坡政府正好填补了企业的短板。
大数据基础设施方面:一个国家在信息和存储等方面的基础设施,决定了大数据时代的海量数据能否汇集、传达,存储和应用。为了为大数据的发展提供良好的基础,新加坡在基础建设投资方面毫不吝啬。新加坡是世界十大高速网络架构之一,并承载了东南亚地区半数以上的第三方数据中心储存量。新加坡已确立其作为全球数据管理枢纽的地位,汇集了东南亚超过50%的商业数据托管及中立运营商数据中心。
大数据产业链方面:在大数据产业链中,横跨了包括数据提供者、存储商、分析和挖掘商,以及应用企业等。对于企业,往往只有应用能力,却缺乏获得、存储和分析与挖掘大数据的能力。而在这方面,当然要依靠产业链中相应的服务商,但政府在产业链建设中发挥了关键性的作用。
在数据挖掘方面,鼓励大学设立数据挖掘和分析平台,2012年,新加坡管理大学(SMU)推出的“Livelabs”创新平台,旨在增强新加坡在消费者和社会行为领域的数据分析能力;鼓励企业设立数据分析中心,一些企业通过在新加坡设立数据分析中心,洞察亚洲市场需求,已成功地实现了区域市场业务的拓展。2011年,劳斯莱斯(Rolls-Royce)与新加坡科技研究局(A*STAR)下设的高性能计算研究院合作成立了计算工程实验室,在智能数据分析领域进行合作研究。
新加坡信息通信研究院(I2R)拥有全亚洲最大的数据挖掘团队之一。
承担数据提供者角色,主动披露政府掌握的数据,在大数据建设中,这一点至关重要,因为毕竟政府是最大的数据拥有者。但是让政府能够主动开放自己的数据,并不是一件容易的事,而新加坡政府却做到了这一点。新加坡土地管理局(Singapore
Land Authority)研发的电子地图(OneMap),就为基于位置的服务(LBS)的企业提供了开放数据平台。
新加坡陆路交通管理局则通过公共数据开放计划开放新加坡交通数据,鼓励企业甚至是个人开发提升公共交通效率的应用软件。
新加坡环境局(NEA, National Environment Agency)与多家企业合作,研究如何收取降雨量,并通过掌握不同地区环境的数据,来预测哪个地区接下来会爆发热带地区可能产生的疾病。
大数据人才方面:目前企业应用大数据过程中往往最缺少数据人才,培养数据人才要充分发挥政府的作用。为了成为全球领先的数据分析中心,新加坡政府在这方面的努力可谓不遗其力。
它与企业以及本地高等院校开展合作,确保毕业生获得必备的专业知识和技能。目前,新加坡在数据分析领域开设了4个硕士课程以及5个本科课程,提供侧重于具体行业应用的多学科研究方法。
在新加坡经济发展局的协助下,亚洲顶尖学府新加坡国立大学(NUS)和IBM将开展合作,共同成立新加坡国立大学商业分析中心。该中心旨在帮助在校学生以及在职人员提升商业分析领域的最新职业技能,为未来数据分析工作打好基础。
大数据技术方面:大数据存储、分析和挖掘技术与产品往往需要巨大投资,但是一般的企业无法承受这样的投资,此时政府的作用就尤为重要。而新加坡在其中,从来就没有缺位。
信息通信研究院(I2R)与中国搜索引擎巨头百度在东盟自然语言技术开发领域进行合作。这一技术如被普遍应用,将为企业进军新兴的东盟市场创造空前机遇。
此外,数据分析会被应用在分析社会认知领域。新加坡高性能计算研究所(IHPC)是率先开发此项技术的研究所之一。通过对人们第一印象的建模研究,企业可以更好地了解亚洲消费者。这项技术能够帮助企业预测消费者对新产品的反馈。
在立法方面:大数据的发展总是伴随着与个人隐私权的冲突,而能否通过立法明确保护个人隐私权是大数据能否良性发展的关键,而新加坡在这方面做得很充分。新加坡于2012年公布了《个人资料保护法》(PDPA)。《个人资料保护法》作为一项较为宽松的立法,旨在防范对国内数据以及源于境外的个人资料的滥用行为。该法案的出台使公民得以进一步了解个人资料的使用途径;同时,在进行个人信息处理的过程中,也加强了企业与客户之间的信任程度。
新加坡在收集、存储大量数据的基础上,对数据进行有效的分析与应用,从中获得经济价值。到2017年底,预计数据行业将为新加坡经济贡献十亿新元的增值,并培养2,500名跨领域数据分析专业人才。
而所有这一切在于新加坡对于大数据的战略定位,对于自然资源稀缺的新加坡而言,“利用数据作为资源”是非常好的选择,新加坡经济发展局资讯通信与媒体业执行司长吴汭刚认为,“对于新加坡,数据就是未来流通的货币,而我们目前所做的就是将新加坡打造成全球数据管理中心,从而有能力与企业合作,将数据的潜在价值转化为可见的商业利润。”
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20