大数据教父传道汽车业大数据变革
大数据与小数据
汽车销售最重要的是联结供求关系。在传统的销售模式中,汽车厂商通过广告等各种销售技巧把车卖出去,最后会发现总有卖不完的库存,总有一些目标消费者没有购买汽车,因为没有人知道这些顾客需要什么,生产的车型没能满足他们的需求。
这个矛盾该如何解决?几乎所有企业都尝试过降价促销,虽然这种做法在刺激销售的过程中也降低了利润,企业却并无它路。因为没有数据就无法对顾客需求进行分析。当然,企业可以走出去问消费者“你们需要什么?”,可以做访谈、问卷调查,但这是小数据,而且很多时候小型数据是错误的数据,与没有数据并无二致。
在大数据时代,这种盲目的运营模式被完全颠覆。我们知道顾客需要什么,并且最终能将客户需要的因素融合到生产的汽车当中,最终生产的每一辆汽车都能卖出去,每一个消费者都可以买到自己心仪的汽车。
要实现这一愿景,关键在于数据的搜集,以及在此基础上进行的大数据分析,这和小数据分析截然不同。在维克托眼中,大数据有三样区别于小数据的特质:大量、混乱、相关性。大量——更多数据带来的是对消费者更精准的需求把握;混乱——用较少的成本、资金即可获得大量、混乱的数据,即便因数据的不准确可能得出不正确的分析结果,但这最终导向大数据的第三个特质;相关性——数据之间或者两个事物之间必然存在相关性,这种相关性告诉我们事物正在发生变化,而并非导出发生变化的原因。作为数据研究的前瞻性学者,维克托的独特之处恰在于此:将着眼点投放于数据之间的“关联关系”而非“因果关系”,认为大数据的核心就是预测。
这种特性的大数据放置于汽车行业,会发生哪些碰撞呢?
1、有意义的选择
传统购车程序中,人们根据颜色、外观、引擎甚至安全性、豪华与否等角度选择,而对那些“不知道自己要什么”的消费者来讲,一个甚至几个类似“空间更大?”“座位更大?”的固定问题并不能真正戳中心房。
这时候,必须要知道每一位消费者的自身需求,提供更多选择的可能性。通过数以百万计的选项,满足每一个细项需求。真正的了解消费者,知道他们想要什么,而不是为什么。这些基于了解之上的需求选项比苦苦追问“为什么选这个”要有意义的多。
2、灵活的生产
通过大数据的统计知道消费者需要什么,按照偏好生产,与市场需求灵活匹配。
对现在的汽车生产商来说,他们清楚要做什么,但是要做到灵活的调整生产方式就有些难度了。了解—分析—供需匹配—提升销售,这一闭环的更迭速度基于对消费市场大数据的精准把握。
大数据如何改变汽车业?
过去的汽车行业变革,可以归纳为更大的引擎、更快的速度、更少的燃油。基于大数据的变革却显而易见:和数据有关的改善——改善生产流程、商业思维、汽车生活。
1、汽车内部装置的改变
我们可以大胆设想这样的场景:车内系统自动采集驾驶者的驾驶习惯信息,为不同的驾驶者匹配不同的汽车设置;夜晚疲劳驾车时,驾驶者坐姿发生改变,车内会自动发出警告;又或者通过指纹识别车主、启动车辆等。这都是大数据的应用案例,有些已经应用在现在的汽车当中。
2、汽车生产思维的改变
流动性数据不断地产生,通过车内感应器对数据收集、传送,可以对可能出现的零部件故障、隐患进行及时的处理。一方面有利于解决汽车安全隐患,另一方面将帮助汽车品质的更新换代,提升产品的设计和构造。
维克托在论坛上谈到了二个案例。首先是劳斯莱斯,作为一家生产豪华车的公司,劳斯莱斯也是世界上第二大航空引擎制造商,并且已经变成一个大数据公司。通过在每一个喷气式飞机的引擎上建立测量、采集的数据中心,劳斯莱斯可以预测引擎的哪一个部件可能会发生故障。比如通过声音、振动的改变,提前在故障发生之前更换飞机引擎某些零部件,避免发生空难的可能。
另一个案例则是关于世界上最大的物流公司之一UPS。UPS有6万辆汽车进行运输工作,UPS在汽车里安装了传感器,将所有数据收集起来进行大数据分析,提高汽车的导航系统和物流线路布局,并且在去年节省了约5千万公里的里程。
3、出行需求的完美方案
汽车作为人类梦想的现实化身,它的出现解决了人类的移动需求。过去的汽车或许更多的是跟引擎的转动、机械的轰鸣相关,而大数据时代的汽车,则更多的考虑人类目前最迫切的需求——完美的出行解决方案。
依据整个生态系统制定出行方案,对蜗居都市的用车人群十分必要:在闹市区找到一个停车位,在上下班高峰期实时避开拥堵路段,在汽车的指引下找到最便捷的餐馆、加油站等。
通过对数据的有效利用影响未来发展格局:对新能源汽车来讲,通过数据模型分析城市内充电设备等基础设施的布局地点、使用结点,合理建设道路辅助设施;对无人驾驶汽车来讲,将车辆自身的数据收集能力、后台计算能力与整个出行生态系统实时匹配、整合、反馈,达成技术实现的可能。
小结:
互联网时代,生活似乎日益变得复杂。而大数据的任务就是通过技术后台的力量,将前端使用者从这些琐碎中解放出来,打造简单、直接、便捷的汽车生活。这不仅需要一辆汽车,还需要满足大数据的需求,才能从根本上改变我们销售汽车的方式,改善汽车的设计,在这个移动的封闭世界中,想你所想,做到真正的人车合一。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21