我们在采用机器学习算法对数据进行分析时,首先要对数据进行了解,而了解数据最快速的方式就是可视化。但是作者可视化采用的方法对很多data都通用,且采用的是各种图形的图矩阵,如直方图、散点图矩阵等等。本文就根据作者的分析来介绍如何运用pandas作各种矩阵图。
(1)数据
数据为PimaIndians dataset,在作者的代码中包含该数据来源网址,即皮马印第安人糖尿病数据集,样本个数有768个,包含变量有:
Preg:怀孕次数
Plas:口服葡萄糖耐量试验中血浆葡萄糖浓度为2小时
Pres:舒张压(mm Hg)
Skin:三头肌皮褶厚度(mm)
test :2小时血清胰岛素(μU/ml)
mass:体重指数(kg /(身高(m))^ 2)
pedi:糖尿病血统功能
age:年龄(岁)
class:类变量(0或1),估计是性别。
(2)Histograms(直方图矩阵)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] #设置变量名 data = pandas.read_csv(url, names=names) #采用pandas读取csv数据 data.hist() plt.show()
但是,我们看到图形并不协调,存在变量与坐标重叠的情况,我们可以调整hist()的参数来解决,包括对x轴、y轴标签大小的调节((xlabelsize,ylabelsize),整个图形布局大小的调节figsize:
data.hist(xlabelsize=7,ylabelsize=7,figsize=(8,6)) # plt.show()
可以看到每一个变量的分布情况,其中mass、plas、pres呈现一定的正态分布,其他除了class之外,基本上左偏。
(3)Density Plots(密度图矩阵)
原始代码输出后仍然存在重叠的地方,在这里加入了对图中坐标文字fontsize,以及整体布局大小figsize。
(4)箱线图矩阵(Box and Whisker Plots)
与(3)类似,在这里注意可以共享x轴和y轴,用了sharex=False, sharey=False的命令。
(5)相关系数矩阵图(Correlation Matrix Plot)
import numpy correlations = data.corr() #计算变量之间的相关系数矩阵 # plot correlation matrix fig = plt.figure() #调用figure创建一个绘图对象 ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) #绘制热力图,从-1到1 fig.colorbar(cax) #将matshow生成热力图设置为颜色渐变条 ticks = numpy.arange(0,9,1) #生成0-9,步长为1 ax.set_xticks(ticks) #生成刻度 ax.set_yticks(ticks) ax.set_xticklabels(names) #生成x轴标签 ax.set_yticklabels(names) plt.show()
颜色越深表明二者相关性越强。
(6)散布图矩阵(Scatterplot Matrix)
from pandas.tools.plotting import scatter_matrix scatter_matrix(data,figsize=(10,10)) plt.show()
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16