R语言平均值,中位数和众数
R中的统计分析通过使用许多内置函数来执行的。这些函数大部分是R基础包的一部分。这些函数将R向量与参数一起作为输入,并在执行计算后给出结果。
我们在本章中讨论的是如何求平均值,中位数和众数。下面将分别一个个演示和讲解 -
1.平均值
平均值是通过取数值的总和并除以数据序列中的值的数量来计算。函数mean()用于在R中计算平均值。
语法
R中计算平均值的基本语法是 -
mean(x, trim = 0, na.rm = FALSE, ...)
R
以下是使用的参数的描述 -
x - 是输入向量。
trim - 用于从排序的向量的两端删除一些观测值。
na.rm - 用于从输入向量中删除缺少的值。
示例
# Create a vector.
x <- c(17,8,6,4.12,11,8,54,-11,18,-7)
# Find Mean.
result.mean <- mean(x)
print(result.mean)
R
当我们执行上述代码时,会产生以下结果 -
[1] 10.812
Shell
1.1.应用修剪选项
当提供trim参数时,向量中的值进行排序,然后从计算平均值中删除所需数量的观察值。
例如,当trim = 0.3时,每一端的3个值将从计算中删除以找到均值。
在这种情况下,排序的向量为(-21,-5,2,3,42,7,8,12,18,54),从用于计算平均值的向量中从左边删除:(-21,-5,2)和从右边删除:(12,18,54)这几个值。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x,trim = 0.3)
print(result.mean)
R
当我们执行上述代码时,会产生以下结果 -
[1] 5.55
Shell
1.2.应用NA选项
如果缺少值,则平均函数返回NA。要从计算中删除缺少的值,请使用na.rm = TRUE。 这意味着删除NA值。参考以下示例代码 -
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
# Find mean.
result.mean <- mean(x)
print(result.mean)
# Find mean dropping NA values.
result.mean <- mean(x,na.rm = TRUE)
print(result.mean)
R
当我们执行上述代码时,会产生以下结果 -
[1] NA
[1] 8.22
Shell
2.中位数
数据系列中的中间值被称为中位数。R中使用median()函数来计算中位数。
语法
R中计算位数的基本语法是 -
median(x, na.rm = FALSE)
R
以下是使用的参数的描述 -
x - 是输入向量。
na.rm - 用于从输入向量中删除缺少的值。
示例
# Create the vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find the median.
median.result <- median(x)
print(median.result)
R
当我们执行上述代码时,会产生以下结果 -
[1] 5.6
Shell
3.众数
众数是指给定的一组数据集合中出现次数最多的值。不同于平均值和中位数,众数可以同时具有数字和字符数据。
R没有标准的内置函数来计算众数。因此,我们将创建一个用户自定义函数来计算R中的数据集的众数。该函数将向量作为输入,并将众数值作为输出。
示例
# Create the function.
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Create the vector with numbers.
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
# Calculate the mode using the user function.
result <- getmode(v)
print(result)
# Create the vector with characters.
charv <- c("baidu.com","tmall.com","yiibai.com","qq.com","yiibai.com")
# Calculate the mode using the user function.
result <- getmode(charv)
print(result)
R
当我们执行上述代码时,会产生以下结果 -
[1] 2
[1] "yiibai.com"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12