一些常见的特征选择方法
现实中产生的特征维度可能很多,特征质量参差不齐,不仅会增加训练过程的时间,也可能会降低模型质量。因此,提取出最具代表性的一部分特征来参与训练就很重要了。
特征抽取
对于特征之间存在正交关系,数据满足高斯分布或指数分布的数据,作线性变换,使用方差、协方差去噪,生成新的主元,接下来按重要性排序后取少数参与训练,达到减少特征的目的。
这里最重要的思想是把多个特征进行线性变换,使用较少的特征表达原来多个特征的主要特点。
由于现实中取得的数据绝大部分满足高斯分布,所以PCA应用极广。
人脸识别应用
将多幅同一人的人脸图像进行PCA变换,找到代表人脸的主要特征模型。当有新的人脸需要识别时,进行相同变换,并与已存在的人脸特征模型进行匹配。
R应用方法
//PCA方案1:用SVD实现
pca1<-prcomp(USArrests, scale = TRUE)
//PCA方案2:采用线性代数中的实对称均值的对角化实现
pca2<-princomp(USArrests,cor=T)
summary(pc1)
summary的输出为:
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 1.5749 0.9949 0.59713 0.41645
Proportion of Variance 0.6201 0.2474 0.08914 0.04336
Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
上面三行分别为标准差,方差贡献率,累计方差贡献率。
根据上面的数据,至PC3时,累计方差贡献率已达0.95664,因此只取前三个特征已经足够。
特征选择
特征选择主要有Filter、Wrapper、Embedded等几种不同的思路。这里主要写写Filter。
卡方检验
在有不同特征值的影响下,对两组目标变量作卡方检验,计算x2值,看两组数据是否有统计学上的明显差异。
这里给出R中的代码例子。
1、使用卡方检验判断患者治疗方式对治疗效果的影响
library(vcd)//加载vcd数据包
//准备进行卡检验所需的数据,提取治疗方式与治疗效果
mytable<-xtabs(~Treatment+Improved,data=Arthritis)
//对mytable进行卡方检验
chisq.test(mytable)
以下是输出结果
Pearson's Chi-squared test
data: mytable
X-squared = 13.055, df = 2, p-value = 0.001463
p < 0.01,可以判断患者接受的治疗方式对治疗效果有明显影响。
2、使用卡方检验判断患者的性别对治疗效果的影响
library(vcd)//加载vcd数据包
//准备进行卡检验所需的数据,提取患者性别与治疗效果
mytable<-xtabs(~Improved+Sex,data=Arthritis)
//对mytable进行卡方检验
chisq.test(mytable)
以下是输出结果
Pearson's Chi-squared test
data: mytable
X-squared = 4.8407, df = 2, p-value = 0.08889
p > 0.05,可以判断患者的性别对治疗效果无明显影响。
上面的实验中,p值表示不同列之间的相互独立的概率。
在1中,由于p值很小,所以拒绝了治疗方式与治疗效果之间相互独立的假设。
在2中,由于p值不够小,所以无法拒绝性别与治疗效果之间相互独立的假设。
WOE、IV
预测目标变量所需的信息总量蕴含在所有的特征中,某个特征所蕴含信息量(IV值)越大,则越重要。
IV值的计算以WOE为基础。
详细的概念、原理及公式可以参考这篇文章
数据挖掘模型中的IV和WOE详解:https://www.cda.cn/view/24633.html
接下来看看R中的应用
//安装和加载woe包。
install.packages("woe")
library(woe)
//计算数据集mtcars中,cyl这一列对目标变量am的woe值和iv值。
woe(Data=mtcars,"cyl",FALSE,"am",10,Bad=0,Good=1)
以下是输出结果
BIN BAD GOOD TOTAL BAD% GOOD% TOTAL% WOE IV BAD_SPLIT GOOD_SPLIT
1 4 3 8 11 0.158 0.615 0.344 135.9 0.621 0.273 0.727
2 6 4 3 7 0.211 0.231 0.219 9.1 0.002 0.571 0.429
3 8 12 2 14 0.632 0.154 0.438 -141.2 0.675 0.857 0.143
//计算数据集mtcars中,mpg这一列对目标变量am的woe值和iv值。
woe(Data=mtcars,"mpg",TRUE,"am",10,Bad=0,Good=1)
以下是输出结果
BIN MIN MAX BAD GOOD TOTAL BAD% GOOD% TOTAL% WOE IV BAD_SPLIT GOOD_SPLIT
1 1 10.4 14.3 4 0 4 0.211 0.000 0.125 -Inf Inf 1.00 0.00
2 2 14.7 15.2 3 1 4 0.158 0.077 0.125 -71.9 0.058 0.75 0.25
3 3 15.5 17.3 3 1 4 0.158 0.077 0.125 -71.9 0.058 0.75 0.25
4 4 17.8 19.2 4 0 4 0.211 0.000 0.125 -Inf Inf 1.00 0.00
5 5 19.2 21.0 1 3 4 0.053 0.231 0.125 147.2 0.262 0.25 0.75
6 6 21.4 22.8 2 2 4 0.105 0.154 0.125 38.3 0.019 0.50 0.50
7 7 22.8 27.3 2 2 4 0.105 0.154 0.125 38.3 0.019 0.50 0.50
8 8 30.4 33.9 0 4 4 0.000 0.308 0.125 Inf Inf 0.00 1.00
信息熵与信息增益
信息的熵,表示不确定性。
在一个数据集中,先对目标分类变量进行熵的计算,再对目标分类变量按某一个特征值进行分组后进行一次熵的计算,两次熵值之差就是该特征值的信息增益。特征值的信息增益越大,表示该特征值的重要性越高。
这里有一个前提,即,目标变量是一个分类变量。
这里使用R语言代码作个说明
一个老太太去买菜,市场上可供选择的东西有以下几种:西红柿(1)、白菜(2)、豆腐(3)、咸菜(4)、馒头(5)、西瓜(6)、樱桃(7)、苹果(8)、猪肉(10)、牛肉(11)、羊肉(12)。不给出任何其它信息之前,我们无法判断老太太今天会买什么菜。此时熵值最大,为
install.packages("entropy")
library(entropy)
y<-c(1,2,3,4,5,6,7,8,9,10,11,12)
//使用max likehood方式计算熵值
entropy(y,method = "ML")//输出值为:2.327497
接下来,在给出4条老太太买菜习惯的信息后,我们发现老太太今天只可能会买樱桃或西瓜。
此时不确定性变小,熵值变小,为:
y<-c(6,7)
entropy(y,method = "ML")//输出值为:0.6901857
因此,4条老太太买菜习惯的信息增闪为:2.327497-0.6901857=1.637311
Gini指数
这个指标同信息增益原理类似,哪个特征对Gini指数贡献大,哪个特征重要。
给出R语言实现
不给出任何信息时,Gini指数为:
install.packages("ineq")
library(ineq)
y<-c(1,2,3,4,5,6,7,8,9,10,11,12)
Gini(y)//输出结果为:0.3055556
给出4个买菜习惯信息后,Gini指数为:
y<-c(6,7)
Gini(y)//输出结果为:0.03846154
相关性
数据集中的两个特征之间存在共线性,即较强的线性关系,就存在冗余,在最终训练时只使用其中一个就足够。
这里列出一些衡量相关性的值。
1、协方差与相关系数。
这两个值描述的是两个变量与各自期望值之间的误差是否变动一致,它们之间可以互相转换,一般使用相关系数较多。相关系数范围为[-1,1],其中-1代表完全负相关,1代表完全正相关,0代表完全独立。
这里列出R应用方法
//计算两列数据之间的相关系数
cor(mtcars$cyl,mtcars$disp,method = "pearson")//输出值为:0.9020329,表示两列数据正相关
cor(mtcars$mpg,mtcars$disp,method = "pearson")//输出值为:-0.8475514,表示负相关
//计算两列数据之间的协方差
cov(mtcars$cyl,mtcars$disp,method = "pearson")//输出值为:199.6603
cov(mtcars$mpg,mtcars$disp,method = "pearson")//输出值为:-633.0972
method取值有三种:
pearson:适用于连续变量,如分析血压值和年龄的相关性。
spearman:适用于顺序数据,如分析数学和语言成绩排名相关性。
kendall:适用于有序分类变量,如分析疼痛级别分类和病情严重程序分类。
2、偏相关
当数据集中的特征很多时,两个特征之间的相关性会受到很多其它特征的影响。在排除掉其它特征的影响之后,计算出来的两个特征的相关性系数,叫偏相关系数。
在特征z固定的前提下,分析x、y的相关性,得到的是一阶偏相关系数,在特征z、q固定的前提下,得到的是二阶偏相关系数。
这里给出R应用
library(ggm)
data("marks")//加载marks数据集
var(marks)//计算marks数据集的方差矩阵
//计算固定analysis,statistics时,vectors和algebra的二阶偏相关系数
pcor(c("vectors", "algebra", "analysis", "statistics"), var(marks))//输出结果为:0.388203
pcor(c(2,3,4,5), var(marks))//与上一句代码意义相同
//偏相关系数的显著性检验,入参分别为:偏相关系数,固定变量个数,样本量
pcor.test(0.388203,2,dim(marks)[1])//输出值p=0.0002213427,p<0.01,因此,在固定analysis,statistics时,vectors和algebra两个特征存在明显偏相关性
Lasso
Lasso的基本思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0的回归系数,达到特征选择的目的。
这里给出R中的应用例子
data(diabetes)//加载数据集diabetes
//使用lasso进行特征选择
lars(diabetes$x,diabetes$y,type="lasso")
输出结果为:
Call:
lars(x = diabetesx,y=diabetesy)
R-squared: 0.518
Sequence of LASSO moves:
bmi ltg map hdl sex glu tc tch ldl age hdl hdl
Var 3 9 4 7 2 10 5 8 6 1 -7 7
Step 1 2 3 4 5 6 7 8 9 10 11 12
Var行即是lasso给出的特征选择顺序,Setp行即时顺序编号。
以下方法可以得到各特征的多重共线性:
data<-lars(diabetes$x,diabetes$y)
summary(data)
输出结果为:
LARS/LASSO
Call: lars(x = diabetesx,y=diabetesy)
Df Rss Cp
0 1 2621009 453.7263
1 2 2510465 418.0322
2 3 1700369 143.8012
3 4 1527165 86.7411
4 5 1365734 33.6957
5 6 1324118 21.5052
6 7 1308932 18.3270
7 8 1275355 8.8775
8 9 1270233 9.1311
9 10 1269390 10.8435
10 11 1264977 11.3390
11 10 1264765 9.2668
12 11 1263983 11.0000
按data中Step行指定的顺序,依次选取特征,则Cp的值从上往下对应变化,Cp值越小,表示回归模型越精确。
如果我们取前3个特征,则cp值为86.7411。如果取前7个特征,则Cp值为8.8775,达到最小。
因此,计算量允许的范围内,取前7个特征进行训练,得到的回归模型最精确。如果要严格控制计算量,则取前3个特征即可。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20