R描述性统计分析
概念
数据摘要,有损地提取数据特征的过程,包含基本统计,分布/累计统计,数据特征(相关性,周期性等),数据挖掘
数据有很多变量和观测值,可以用一些简单表格,图形和少数汇总数字来描述。这些描述方法被称为描述统计学,也称为探索性数据分析(EDA,exploratory data analysis)
描述统计目的在于帮助展示和理解数据。
数据作为信息的载体,要分析数据中包含的主要信息,即要分析数据的主要特征。也就是说,要研究数据的数字特征,包括集中位置(集中趋势),分散程度(离中趋势)和数据分布(偏态和峰态)
集中趋势从数据中选‘典型代表’,‘代表是否够典型’由离散程度检验
位置的度量
有些汇总统计量是描述数据“位置”的。其实数据的每个点都有自己的位置,不可能一一列举;能做到描述数据的“中间”或“中心”在哪里;所谓位置的度量就是用来描述定量资料的集中趋势的统计量,集中趋势,一组数据向着一个中心靠拢的程度,也体现了数据中心所在的位置
均值
R语言函数及格式:mean(x,trim=0,na.rm=FALSE),x是对象,如向量,矩阵,数组或数据框
-
当mean作用于矩阵或数值型数据框时,返回为一个值即所有数值的平均值;若想按行或列计算均值:apply(data,1,mean),行1列2;或采用colMeans(data),rowMeans(iris[,1:
3])等价于apply(iris[,1:3],2,mean)
-
trim参数,异常值:当研究的数据中存在异常值时,可以通过设置trim参数来调整纳入计算的样本数据来剔除异常值后再计算均值;trim取值范围0到0.5,表示在计算均值前需要去掉异常值的比例(个数length(data)*trim);trim参数是对排序后的数据从头到尾剔除相同个数元素再求均值的。
- na.rm,设置缺失值NA,当数据中有缺失值时需要将na.rm设置为TRUE
- weighted.mean(),对矩阵和数组计算加权平均值,对数据框并不适用;格式为weighted.mean(x,wt,na.rm=FALSE),wt为权重向量与x同维度,与时间相关的模型比较常用
几何平均数:N个变量值乘积的N次方根,主要用于计算平均增长率,比率
年收益率分别是,4.5%,2.1%,平均增长率是多少?104.5*102.1-100,然后再开方
sort(data):输出排序后的元素
order(data):输出排序后的位置
dput(data):一个神奇的函数,输出向量格式,可直接复制
被滥用的均值
非单峰分布不应使用,婴儿和父母的平均身高加一起就是两不靠
极值的影响
简单的算术平均,增益率等不适合
中位数
中位数描述数据中心位置的数字特征,对于对称分布的数据,均值与中位数比较靠近;对于偏态分布的数据,均值与中位数不同;中位数的一个显著特征是不受异常值的影响,具有稳健性,因此是非常重要的统计量
median(x,na.rm=FALSE)函数进行中位数,要是有缺失值需要将na.rm设置为TRUE,sort()函数
众数(离散变量)和分位数
众数不受极端值的影响,如果数据没有明显的集中趋势,那么众数可能不存在;也可能有两个最高峰点,那么就有两个众数。众数适用于数据量较多,并且数据分布偏斜程度较大有明显峰值时
R里面竟然没有找众数的函数。。。。。
百分位数:是中位数的推广;p分位数又称为100p百分位数,0.5分位数就是中位数,0.75分位数与0.25分位数(第75百分位数与第25百分位数)比较重要,分别称为上下百分四位数,分别记为Q3,Q1
quantile()函数计算观测百分位数
quantile(x,probs=seq(0,1,0.25),na.rm=FALSE,),seq()产生等差数列
离散程度的测量
离散程度
一组数据原理其中心的程度
-一组变异指标,主要用来刻画总体分布的变异状况或离散程度
- 数据分布的离散程度主要靠极差,四分差,平均差,方差,标准差等统计指标来度量
- 离散程度分析的主要作用有:1)衡量平均指标的代表性;2)反映社会经济活动的均衡性;3)研究总体标志值分布偏离正态分布的情况;4)抽样推断统计等分析的一个基本指标
极差
样本中两个极端值之差,也称全距。数据越分散,极差越大
R=xmax−xmin
极差只利用了数据两端的信息,容易受极端值的影响,并没有充分利用数列的信息
R代码:range(data)[2]-range(data)[1] 或者 max(data)-min(data) 或者 diff(range(data))
平均差
各变量与均值差的平均数,即平均差异,反应一组数据的离散程度
数学性质差(不能求导),未考虑数值分布
四分位差
两个四分位点之差,反应了中间50%数据的离散程度,其数值越小,说明数值越集中.
Qd=Ql−Qu
对数据掐头去尾,避免了极端值的影响,但没有充分利用数据信息
R代码:IQR(data) 或者quantile(data)获取各分位数据相减
方差与标准差
描述离散程度,最常用的指标,它们利用了样本的全部信息去描述数据取值的分散性。方差是各样本相对均值的偏差平方和的平均,计为s2
R语言:方差var(x,na.rm=FALSE,use),标准差:sd(x,na.rm = FALSE), 两者是sqrt()关系
cov()协方差矩阵;cor()相关矩阵
Z分数,数据标准化
变异系数
一组数据的标准差与平均数之比,成为变异系数,也叫离散系数
它是刻画数据相对分散性的一种度量,记为CV
相对的,去除了单位的影响,是无量纲统计量,用百分号表示。在实际应用中可以消除由于不同计量单位/不同平均水平所产生的影响
CV<-paste(round(100*sd(iris[,3])/mean(iris[,3]),2),'%',sep='')
1
偏度(Skewness)
描述某变量取值分布对称性,是三阶矩。
左偏分布<0,数据左侧有一个大尾巴,概率密度函数中,有很多极小值,均值往左边跑,均值小于中位数
右偏分布>0,数据右侧有一个大尾巴
对称分布=0
峰度(Kurtosis)
描述某变量所有取值分布形态陡峭程度,正态分布之间的较量,标准正态分布的峰度值是3
- 正态分布(0/3)
- 尖顶峰(>0/3)
- 平顶峰(<0/3)
其他分散程度度量
css,校正平方和
uss,未校正平方和
描述性统计量函数
基础包 summary()
应用于数值型变量将分别得到位置度量指标,即最小值min,上四分位数1st Qu,中位数median,下四分位数3rd Qu,最大值max;
当应用于因子型/逻辑型向量得到频数统计
Hmisc包中的describe()函数
可获取缺失情况,唯一值,各个详细的分位数,位置度量
pasteccs包中的stat.desc()函数
对数值型变量进行统计分析
使用格式为stat.desc(x,basic=TRUE,desc=TRUE,norm=FALSE,p=0.95),basic=TRUE设置一些基础统计参数展示,desc可设置一些描述性统计数值的展示.desc包含中位数/平均数/平均数的标准误/平均置信度为95%的置信区间/方差/标准差/变异系数。
当将norm设置为TRUE时,则返回正态分布统计量,包括偏度和峰度(以及它们的统计显著程度)和Shapiro-Wilk正态检验结果。
这里使用了p值来计算平均数的置信区间,默认置信度为0.95
psych包describe()函数
可以计算非缺失值的数量,标准差,截尾均数,绝对中位差,偏度等统计量。
偏态和峰态
反应总体分布形态的指标,偏态(数据分布不对称的方向和程度),峰态(数据分布图形的尖峭程度或扁平程度)
分组计算描述统计量
在比较多组个体或观测时,关注焦点通常是各组描述性统计信息,而不是样本整体的描述性统计信息,在R中主要有三种方法可以实现:
- aggregate():分组获取描述性统计量,可对单组或多组变量进行分组统计,by的变量一定要是list格式要不会报错~按照单变量分组
按照两个变量作为分组,且对不给list命名即不写‘am=’,跑出来的结果分组将会是Group1这种不友好的展示界面
aggregate()函数的另一种写法,写成公式发~分开
doBy包-summaryBy()函数波浪线左侧为需要分析的数值型变量,右边为类别型分组变量;其中data=及FUN=不可省略不写;FUN可为自定义变量,自定义函数时记得为函数起名字在展示时清楚
psych包中-describe.by()函数具体参数可看R帮助文档?describe.by()
列联表 (频数表)
类似excel的数据透视表
table(var1,var2…,varN):使用N个类别型变量(因子)创建一个N维列联表
- xtabs(formula,data):xtabs(~A+B,data=mydata)
根据一个公式和一个矩阵或数据框创建一个N维列联表;要进行交叉分类的变量应出现在公式的右侧,以+作为分隔符。若某个变量写在公式的左侧,则其为一个频数向量(在数据已经被表格格式化时很有用)
prop.table(table,margins):依margins定义的边际列表将表中条目表示为分数形式
margin.table(table,margins):依margins定义的边际列表计算表中条目的和,边界求和,margin=1对行求和,不写总体求和
addmargins(table,margins):将概述边margins(默认是求和结果)放入表中,margin控制加行/列的和,实现和excel一样的透视表
ftable(table):创建一个紧凑的“平铺”式列联表
相关性分析
相关系数可以用来描述定量变量之间的关系。相关系数的符号(+,-)表明关系的方向(正相关或负相关),其值的大小表明关系的强弱程度(完全不相关为0,完全相关为1);相关的类型,R可计算多种相关系数,包括Pearson相关系数(两个变量之间的线形相关程度),Spearman相关系数(分级定序变量之间的相关程度),Kendall相关系数(非参数的等级相关度量),偏相关系数,多分格(polychoric)相关系数和多系列(polyserial)相关系数。
** cor()函数可以计算这三种相关系数,**cov()可以用来计算协方差。cor(x,use=,method=),use指定缺失值处理方式,method,指定相关系数的类型,可选类型为pearson,spearman或kendall。默认设置为everything和pearson
显著性检验,cor.test(),来检验相关性的显著水平,cor只是计算相关性程度但没有检验其显著水平
缺失值处理可选为:all.obs,假设不存在缺失数据,遇到缺失数据时将报错;everything,遇到缺失值时,相关系数的计算结果被置为missing;complete.obs,行删除;pairwise.complete.obs,成对删除
psych包中的corr.test()函数:可以一次为pearson,Spearman,Kendall相关计算相关矩阵和显著性水平。
双向交叉表(列联表gmodels-crossTable()):表格中每个单元格内数量不同是由于悠然的可能性有多大
皮尔森卡方独立性检验:看一个变量的值是如何随着另一个值的变化而变化的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06