
多元线性回归分析理论详解及SPSS结果分析
当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。这里直说多元线性回归。对比一元线性回归:
1.1多元回归模型:
1.2多元回归方程
1.3估计的多元回归方程
3.1 多重判定系数:(Multiple coefficient of determination)
4. 显著性检验
在此重点说明,在一元线性回归中,线性关系的检验(F检验)和回归系数的检验(t检验)是等价的。
但是在多元回归中,线性关系的检验主要是检验因变量同多个自变量线性关系是否显著,在k个自变量中,只要有一个自变量与因变量的线性关系显著,F检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中。
4.1 线性关系的检验
步骤:
(1):提出假设
(3):作出统计决策。
5.1 多重共线性
多重共线性:当回归模型中两个或两个以上的变量彼此相关时,则称回归模型中存在多重共线性。
多重共线性的判别:
(1)模型中中各对自变量之间显著相关
(2)当模型的线性关系检验(F检验)显著时,几乎所有的回归系数βi的t检验却不显著。
(3)回归系数的正负号与预期的相反。
(4)容忍度(tolerance) 与 方差扩大因子(variance inflation factor, VIF).
容忍度:某个变量的容忍度等于 1 减去该自变量为因变量而其他k−1个自变量为预测变量时所得到的线性回归模型的判定系数。即1−R2i。 容忍度越小,多重共线性越严重。通常认为 容忍度小于 0.1 时,存在严重的多重共线性。
方差扩大因子:容忍度的倒数。 因此,VIF越大,多重共线性越严重,一般认为VIF的值大于10时,存在严重的多重共线性。
5.2 多重共线性的处理
常见的两种办法:
(1)将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
(2)如果要在模型中保留所有的自变量,那么应该:
(2.1)避免根据t统计量对单个参数β进行检验,
(2.2)对因变量y值的推断(预测和估计)限定在自变量样本值的范围内。
5.3选择变量避免共线性的几种方式,
在建立回归模型时,我们总是希望用最少的变量来说明问题,选择自变量的原则通常是对统计量进行显著性检验,检验的根据是:将一个或一个以上的自变量引入回归模型中时,是否使残差平方和(SSE)显著减少,如果增加一个自变量使残差平方和(SSE)显著减少,则说明有必要将这个变量引入回归模型中,否则,没有必要将这个变量引入回归模型中。确定在模型中引入自变量xi是否使残差平方和(SSE)显著减少的方法,就是使用F统计量的值作为一个标准,以此来确定在模型中增加一个自变量,还是从模型中剔除一个自变量。
变量选择方式:
5.3.1 向前选择;
第一步: 对k个自变量分别与因变量y的一元线性回归模型,共有k个,然后找到F统计量的值最大的模型及其自变量xi并将其首先引入模型。
第二步: 在已经引入模型的xi的基础上,再分别拟合xi与模型外的k−1个自变量的线性回归模型,挑选出F值最大的含有两个自变量的模型, 依次循环、直到增加自变量不能导致SSE显著增加为止,
5.3.2向后剔除
第一步:先对所有的自变量进行线性回归模型。然后考察p<k个去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,
第二步:考察p−1个再去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,直到剔除一个自变量不会使SSE值显著减小为止,这时,模型中的所剩自变量自然都是显著的。
5.3.3逐步回归
是上面两个的结合、考虑的比较全,以后就用这个就可以。
具体的分析过程、咱们以spss的多元回归分析结果为例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10