京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多元线性回归分析理论详解及SPSS结果分析
当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。这里直说多元线性回归。对比一元线性回归:
1.1多元回归模型:
1.2多元回归方程
1.3估计的多元回归方程
3.1 多重判定系数:(Multiple coefficient of determination)

4. 显著性检验
在此重点说明,在一元线性回归中,线性关系的检验(F检验)和回归系数的检验(t检验)是等价的。
但是在多元回归中,线性关系的检验主要是检验因变量同多个自变量线性关系是否显著,在k个自变量中,只要有一个自变量与因变量的线性关系显著,F检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中。
4.1 线性关系的检验
步骤:
(1):提出假设
(3):作出统计决策。
5.1 多重共线性
多重共线性:当回归模型中两个或两个以上的变量彼此相关时,则称回归模型中存在多重共线性。
多重共线性的判别:
(1)模型中中各对自变量之间显著相关
(2)当模型的线性关系检验(F检验)显著时,几乎所有的回归系数βi的t检验却不显著。
(3)回归系数的正负号与预期的相反。
(4)容忍度(tolerance) 与 方差扩大因子(variance inflation factor, VIF).
容忍度:某个变量的容忍度等于 1 减去该自变量为因变量而其他k−1个自变量为预测变量时所得到的线性回归模型的判定系数。即1−R2i。 容忍度越小,多重共线性越严重。通常认为 容忍度小于 0.1 时,存在严重的多重共线性。
方差扩大因子:容忍度的倒数。 因此,VIF越大,多重共线性越严重,一般认为VIF的值大于10时,存在严重的多重共线性。
5.2 多重共线性的处理
常见的两种办法:
(1)将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
(2)如果要在模型中保留所有的自变量,那么应该:
(2.1)避免根据t统计量对单个参数β进行检验,
(2.2)对因变量y值的推断(预测和估计)限定在自变量样本值的范围内。
5.3选择变量避免共线性的几种方式,
在建立回归模型时,我们总是希望用最少的变量来说明问题,选择自变量的原则通常是对统计量进行显著性检验,检验的根据是:将一个或一个以上的自变量引入回归模型中时,是否使残差平方和(SSE)显著减少,如果增加一个自变量使残差平方和(SSE)显著减少,则说明有必要将这个变量引入回归模型中,否则,没有必要将这个变量引入回归模型中。确定在模型中引入自变量xi是否使残差平方和(SSE)显著减少的方法,就是使用F统计量的值作为一个标准,以此来确定在模型中增加一个自变量,还是从模型中剔除一个自变量。
变量选择方式:
5.3.1 向前选择;
第一步: 对k个自变量分别与因变量y的一元线性回归模型,共有k个,然后找到F统计量的值最大的模型及其自变量xi并将其首先引入模型。
第二步: 在已经引入模型的xi的基础上,再分别拟合xi与模型外的k−1个自变量的线性回归模型,挑选出F值最大的含有两个自变量的模型, 依次循环、直到增加自变量不能导致SSE显著增加为止,
5.3.2向后剔除
第一步:先对所有的自变量进行线性回归模型。然后考察p<k个去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,
第二步:考察p−1个再去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,直到剔除一个自变量不会使SSE值显著减小为止,这时,模型中的所剩自变量自然都是显著的。
5.3.3逐步回归
是上面两个的结合、考虑的比较全,以后就用这个就可以。
具体的分析过程、咱们以spss的多元回归分析结果为例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23