从入门到精通:互联网数据分析书籍清单
任何一个技能的学习,都有从浅到深的过程,数据分析也不例外。一个完整的数据分析知识体系类似金字塔结构:最顶层是对数据价值的认知、业务理解,中间是数据分析方法论,而最底层则是数据分析的解决方案或者具体的操作方法。我把数据分析的推荐书籍划分成三个段位,便于大家渐进式学习。
数据分析入门版
入门版适合数据分析的入门者、对数据分析没有整体概念的人,常见于应届毕业生、经验尚浅的转行者。
入门版推荐书籍
《深入浅出数据分析》:O’Relly出版的HeadFirst(深入浅出)系列书籍之一,书中有大量的图片和有趣的案例组合。本书浅显易懂形象生动,可以使入门者对分析的概念有个全面的认知。
《谁说菜鸟不会数据分析》:本书详细介绍了数据分析的基本方法和过程,并且以Excel表格为例进行了案例阐述。同时本书还介绍了数据分析在职场的意义,可以帮助职场小白快速上手。
《赤裸裸的统计学》:作者年轻时是个追求学习的学霸,后来自己从统计学中发掘了很多可以应用到生活的地方。这也是本书的主旨,结合生活讲解统计知识,生动有趣。可以避免统计学一上来就大讲贝叶斯概率和随机分析的枯燥。
同样类似的书籍还有《统计数字会撒谎》,这本书知名度要高点,通过揭露“虚假数字信息”来帮助大家理解背后的统计学原理。
数据分析进阶版
进阶版具有一定的行业针对性,要求分析者具备一定的数据分析常识和业务理解;适合网站分析师,商业分析师以及数据产品经理等人群。
进阶版推荐书籍
《精通web analytics 2.0》:Analytics将点击流网站分析工具与定性数据、测试与试验以及竞争情报工具相结合,从而推演出详尽的网站战略以及操作层方案。此书虽老,但其中很多思想和流量分析的案例仍然很有借鉴意义,现在国内只能买到二手的旧书。
与此类似的有《网站分析实战》,是国内一本讲网站分析的书,没有上面经典,但胜在新出,很多案例和理念都有及时的更新。
《深入浅出统计学》:与上面的《深入浅出数据分析》同属于Headfirst系列书籍,运用充满互动性的真实世界情节,帮助读者快速了解统计方面的理论知识。
《数据化管理》:黄成明著,讲解在企业中应用数据的例子,读完受益匪浅,里面举的很多例子都很接地气。虽说偏向于零售业管理,但大道归一,可适用于很多行业,当时依据里面的理念规划了美团外卖面向BD的数据产品。
《MySQL必知必会》:这本也是我当年学习SQL的入门书,薄册子一本,看起来很快。SQL是个性价比很高的技能,简单而强大。任何想进一步提高自己数据分析技能的产品/运营/分析师 同学,都建议点亮这个技能点。
《互联网增长的第一本数据分析手册》:我们公司的出的一本数据分析手册,全书以增长为主题。这本手册介绍了互联网创业企业增长方法论、互联网数据分析的常见方法(趋势、转化、留存、实时、分群、细查、热图)、细分行业(如SaaS、互联网金融、电商等)的应用。
数据分析高阶版
更高阶的数据分析相对来说专业性就强了,如涉及到企业内部数据治理,数据结合的业务分析,数据可视化等。当然,还有数据挖掘算法之类的更深入的东西,这块没有研究就不瞎推荐了。
高阶版推荐书籍
《决战大数据》:阿里巴巴前数据副总裁车品觉老师所著,讲解了阿里巴巴在企业内部治理数据过程中的心得,所讲“存-通-用”数据管理三板斧和“从数据化运营到运营数据”,字字珠玑,可堪借鉴。
《精益数据分析》:此书优势在于将企业分成了几个大的行业类别,并分门别类的讲解了每个行业的商业模式特点及分析技巧,对使用者的分析能力要求较高,且必须具备相应的业务知识。
《The Wall Street Journal Guide to Information Graphics》,华尔街日报负责商业分析的人做的可视化指南,精华且实用,我之前写过读书笔记《华尔街日报是这样做数据可视化的》,可供大家参考。
《数据仓库经典教程》:网上有人整理出来的资料,优点是简单明了,不像正常的数据仓库教材厚厚一本。
当然,数据分析是一门很深的学问,我也只是窥得冰山一角。要想做好数据分析必须具备多方面的技能:需要看清数据的价值并且懂业务,需要熟知数据分析的方法论,同时也要熟练掌握数据分析软件的操作。在学习上面数据分析推荐书籍的同时,不断在实践中加深自己的理解,用数据来驱动业务和客户增长。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20