大数据下所面临的安全挑战
在数年前,开始讨论虚拟化时,就注定了云的解决方案的诞生,而当云的解决方案逐渐成熟时,企业或是用户开始将资料往云端存放时,也慢慢的导致大数据时代的来临。
目前存取资料的装置,慢慢的从电脑,开始往移动装置,搭捷运时,我们看到越来越多人习惯拿出手机,或是平版电脑,开始阅读,或是浏览相关的资讯,这意味着资料的存取从以往的定时定点到目前的随时随地,这是一个演变。
而当我们开始使用 gmail、facebook、google 的时候,似乎我们可以无止境的将各种资料上传,随时可以调阅,浏览等等,这也表示在云端后端的数据,已经大量的成长。
在这状况下的安全呢?这些大数据下的服务,不论公开服务也好,或是企业的各种资料也好,一旦开放存取,就开始存在安全的议题,简单来说,从使用者的认证问题来保护使用者,一直思考如何保护这些包括敏感或是不敏感的个人资料等等,这个议题也开始逐渐发酵。
当我们回归到基本的元素时,我们会发现当下的各种攻击,90%均透过网路达成,网络已经变成攻击里面不可或缺的媒介。是的,当某个企业被 APT
攻击,大量取得资料后,分析的结果,恶意程式可能利用邮件,透过网路传递至企业内部,日前吵的沸沸扬扬的网军攻击事件等等,大部分均以网路攻击有关。
大数据下的安全所面临的挑战有:
1.后台系统的复杂性
在数据之上,往往有多种复杂的应用程式支撑,因此在於安全的考量上更为复杂。用户可能采用单存的 3 tier 架构,或是采取更复杂的 Web
Service 的服务架构等等。无论何种架构,主要的目的均在於对大量数据进行演算加值,并且提供各种介面或是结果给与使用者。
2.多方的网路存取
尽管后台的应用程式较为复杂,对於使用者或而言,最简洁的存取方式便是透过网路存取相关的服务,相对於前端存取网路的设备而言,通常会尽量包含允许各种不同
的装置存取服务。然而对於入侵者而言,这产生了一个极为便利的攻击方式,也就攻击者亦能透过各种路径尝试攻击整体服务,进而探索系统漏洞而进行深入攻击。
3.即时监控与回应
一旦大数据开始藉由服务提供给各种使用者,系统就开始产生各种的变化,包括数据的变化,以及各种应用的变化。在这种状况下,安全的场景也会跟随着变化,如是
否有人对应用进行字典攻击,阻断是攻击等等。当大量的资料开始移动时,以及随着使用的量增加时,即时的监控将会更加艰辛,主要是攻击者更容易夹杂在正常使
用者之间,对系统发动攻击。这会让系统管理人员疲於奔命,并且增加侦测的困难度,更遑论采取及时的对策。
在这些状况下,当我们思索着大数据下的安全时,就可以回归到最基础面,对于整体系统进行检测并且加强防御措施。
三个基础方向考虑大数据下的安全:
1.应用程式安全
数据一般并不会直接被使用,而是透过应用程式进行展示,从保护数据的观念开始,需要对前端的应用进行强化,因此企业可以在应用程式上线前,中,后,对各种开发的应用程式进行安全检测,同时也可以对已经上线的相关网页应用程式定期强化检测。
透过应用程式的安全检测,可以让企业对於使用数据的应用程式提供相对应的基本安全检测,并且做到资安的第一步。
2.网路安全防御系统
在应用程式之后的第二道关卡事实上便是网路。企业提供服务时,相对的提供各种的网路存取方式,企业可以考虑由强化网路安全开始做起,譬如在以往,仅在出口处
部署网路安全防御设备的想法,扩充到内部的系统架构中,也就是在内部也部署新一代的网路防御系统,有效的防御各种来至於网路的攻击。
3.智能安全分析系统
当大数据来临时,企业会与时渐进的开始部署各种安全措施,智能安全分析系统可作为企业的安全大脑,透过各种关连分析,判断是否可能遭受相关的攻击并且协助企
业提前进行反应。智能安全分析系统可以让企业由原来的被动是侦测,提高为主动是挖掘,甚至利用历史的资料进行威胁分析,藉此可以提早发现各种潜在可能的安全威胁。
大数据下的安全议题,并非是一个封闭而且可透过单一解决方案达成的问题,各个企业可以根据本身的数据性质,以及使用情境,搭配相关
不同的解决方案。譬如,在各种主机上,可能依然存在有 SSO
的机制,可能依然会有主机安全解决方案,防毒解决方案等等。因此,建议用户从基础的防御开始,譬如基本的应用程式安全,以及基础的网路安全开始出发,接
着,再透过智能安全分析系统来协同运作各方的安全防御解决方案。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21