
R语言-向量构造及函数构造
1,生成向量的方法
(1) seq()函数
[ruby] view plain copy
> x=seq(from=1, to=5, by=0.5)
> x
# [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
(2)rep()函数
[ruby] view plain copy
> x=rep(pi, times=5)
> x
# [1] 3.141593 3.141593 3.141593 3.141593 3.141593
(3)seq 与 rep 结合使用
[ruby] view plain copy
> x=rep(seq(from=1,to=5,by=1), times=5)
> x
# [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(4)自主建立向量
[ruby] view plain copy
> x=c(rep(seq(from=1,to=5,by=1), times=2),pi,17,24)
> x
# [1] 1.000000 2.000000 3.000000 4.000000 5.000000 1.000000 2.000000 3.000000
# [9] 4.000000 5.000000 3.141593 17.000000 24.000000
2,选择向量元素
(1)x[ i ] 形式,i表示下标位
[ruby] view plain copy
> x
# [1] 1.000000 2.000000 3.000000 4.000000 5.000000 1.000000 2.000000 3.000000
# [9] 4.000000 5.000000 3.141593 17.000000 24.000000
> x[11]
# [1] 3.141593
(2)x[ m: n] 形式,选择一段元素
[ruby] view plain copy
> x[c(11:13)]
# [1] 3.141593 17.000000 24.000000
> x[seq(from=11,to=13,b=1)] #用了seq函数
# [1] 3.141593 17.000000 24.000000
(3)使用逻辑向量从数据向量中选择元素
[ruby] view plain copy
> x>3 # 逻辑判断x的各元素
# [1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x>3] #选择TRUE的位置的元素
# [1] 4.000000 5.000000 4.000000 5.000000 3.141593 17.000000 24.000000
> x%%2==0 #选择奇数
# [1] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
> x[x%%2==1]
# [1] 1 3 5 1 3 5 17
(4)自定义行名,取数
[ruby] view plain copy
> year=c(1983,1982,1988,1990)
> names(year)=c('A','B','C','D')
> year
# A B C D
# 1983 1982 1988 1990
> year[c('A','D')]
# A D
# 1983 1990
3,函数编写
(1)if选择函数
[ruby] view plain copy
fun.test <- function(a, b, method = "add"){ ## function关键字,fun.test函数名
if(method == "add"){ ## 如果if或者for/while等后面的语句只有一行,则无需使用花括号
res <- a + b
}
if(method == "subtract"){
res <- a - b
}
return(res) ## 返回值
}
[ruby] view plain copy
> ### 检验结果
> fun.test(a = 10, b = 8, method = "add")
# [1] 18
> ### 检验结果
> fun.test(a = 10, b = 8, method = "subtract")
# [1] 2
(2)for循环函数
[ruby] view plain copy
### for循环与算法
test.sum <- function(x)
{
res <- 0 ## 设置初始值,在第一次循环的时候使用
for(i in 1:length(x)){
res <- res + x[i] ## 这部分是算法的核心,总是从右面开始计算,结果存到左边的对象
}
return(res)
}
### 检验函数
a <- c(1,2,1,6,1,8,9,8)
test.sum(a)
sum(a)
(3)return函数
[ruby] view plain copy
## 计算标准差
sd2 <- function(x)
{
# 异常处理,当输入的数据不是数值类型时报错
if(!is.numeric(x)){
stop("the input data must be numeric!\n")
}
# 异常处理,当仅输入一个数据的时候,告知不能计算标准差
if(length(x) == 1){
stop("can not compute sd for one number,
a numeric vector required.\n")
}
## 初始化一个临时向量,保存循环的结果,
## 求每个值与平均值的平方
x2 <- c()
## 求该向量的平均值
meanx <- mean(x)
## 循环
for(i in 1:length(x)){
xn <- x[i] - meanx
x2[i] <- xn^2
}
## 求总平方和
sum2 <- sum(x2)
# 计算标准差
sd <- sqrt(sum2/(length(x)-1))
# 返回值
return(sd)
}
## 程序的检验
## 正常的情况
sd2(c(2,6,4,9,12))
## 一个数值的情况
sd2(3)
## 输入数据不为数值类型时
sd2(c("1", "2"))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30