R语言-向量构造及函数构造
1,生成向量的方法
(1) seq()函数
[ruby] view plain copy
> x=seq(from=1, to=5, by=0.5)
> x
# [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
(2)rep()函数
[ruby] view plain copy
> x=rep(pi, times=5)
> x
# [1] 3.141593 3.141593 3.141593 3.141593 3.141593
(3)seq 与 rep 结合使用
[ruby] view plain copy
> x=rep(seq(from=1,to=5,by=1), times=5)
> x
# [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(4)自主建立向量
[ruby] view plain copy
> x=c(rep(seq(from=1,to=5,by=1), times=2),pi,17,24)
> x
# [1] 1.000000 2.000000 3.000000 4.000000 5.000000 1.000000 2.000000 3.000000
# [9] 4.000000 5.000000 3.141593 17.000000 24.000000
2,选择向量元素
(1)x[ i ] 形式,i表示下标位
[ruby] view plain copy
> x
# [1] 1.000000 2.000000 3.000000 4.000000 5.000000 1.000000 2.000000 3.000000
# [9] 4.000000 5.000000 3.141593 17.000000 24.000000
> x[11]
# [1] 3.141593
(2)x[ m: n] 形式,选择一段元素
[ruby] view plain copy
> x[c(11:13)]
# [1] 3.141593 17.000000 24.000000
> x[seq(from=11,to=13,b=1)] #用了seq函数
# [1] 3.141593 17.000000 24.000000
(3)使用逻辑向量从数据向量中选择元素
[ruby] view plain copy
> x>3 # 逻辑判断x的各元素
# [1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x>3] #选择TRUE的位置的元素
# [1] 4.000000 5.000000 4.000000 5.000000 3.141593 17.000000 24.000000
> x%%2==0 #选择奇数
# [1] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
> x[x%%2==1]
# [1] 1 3 5 1 3 5 17
(4)自定义行名,取数
[ruby] view plain copy
> year=c(1983,1982,1988,1990)
> names(year)=c('A','B','C','D')
> year
# A B C D
# 1983 1982 1988 1990
> year[c('A','D')]
# A D
# 1983 1990
3,函数编写
(1)if选择函数
[ruby] view plain copy
fun.test <- function(a, b, method = "add"){ ## function关键字,fun.test函数名
if(method == "add"){ ## 如果if或者for/while等后面的语句只有一行,则无需使用花括号
res <- a + b
}
if(method == "subtract"){
res <- a - b
}
return(res) ## 返回值
}
[ruby] view plain copy
> ### 检验结果
> fun.test(a = 10, b = 8, method = "add")
# [1] 18
> ### 检验结果
> fun.test(a = 10, b = 8, method = "subtract")
# [1] 2
(2)for循环函数
[ruby] view plain copy
### for循环与算法
test.sum <- function(x)
{
res <- 0 ## 设置初始值,在第一次循环的时候使用
for(i in 1:length(x)){
res <- res + x[i] ## 这部分是算法的核心,总是从右面开始计算,结果存到左边的对象
}
return(res)
}
### 检验函数
a <- c(1,2,1,6,1,8,9,8)
test.sum(a)
sum(a)
(3)return函数
[ruby] view plain copy
## 计算标准差
sd2 <- function(x)
{
# 异常处理,当输入的数据不是数值类型时报错
if(!is.numeric(x)){
stop("the input data must be numeric!\n")
}
# 异常处理,当仅输入一个数据的时候,告知不能计算标准差
if(length(x) == 1){
stop("can not compute sd for one number,
a numeric vector required.\n")
}
## 初始化一个临时向量,保存循环的结果,
## 求每个值与平均值的平方
x2 <- c()
## 求该向量的平均值
meanx <- mean(x)
## 循环
for(i in 1:length(x)){
xn <- x[i] - meanx
x2[i] <- xn^2
}
## 求总平方和
sum2 <- sum(x2)
# 计算标准差
sd <- sqrt(sum2/(length(x)-1))
# 返回值
return(sd)
}
## 程序的检验
## 正常的情况
sd2(c(2,6,4,9,12))
## 一个数值的情况
sd2(3)
## 输入数据不为数值类型时
sd2(c("1", "2"))
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16