Intel发布AI免费系列课程3部曲:机器学习基础、深度学习基础以及TensorFlow基础
Intel于近期发布了三门AI系列的免费课程,分别是关于机器学习基础、深度学习基础、TensorFlow基础三个方面。据悉,该系列免费课程主要针对研究生阶段的学生,营长将三门课程概要及链接整理如下。
课程1:机器学习基础
概要
本课程介绍了Intel架构中的机器学习基础知识。涵盖的主题包括:
回顾了机器学习可以解决的问题类型
理解机器学习算法中的各组成模块
学习在机器学习中构建模型的基础知识
探索关键算法
在本课程结束时,学生将了解以下内容:
监督学习算法
如何识别待解决问题的类型,选择正确的算法,调整参数并验证模型
本次免费课有12周的课程,每周至少需要3个小时才能完成。并且这些课程的练习需要用Python来实现。
课程网址:
https://software.intel.com/en-us/ai-academy/students/kits/machine-learning-501
课程2:深度学习基础
概要
本课程介绍了Intel架构中的深度学习基础知识。深度学习在计算机视觉和自然语言处理方面所实现的优异表现,使其在业界引起了极大关注。
在本课程结束时,学生将对以下内容有一个明确的理解:
深度学习的技术,专业术语和有关数学知识
如何适当地构建和训练这些模型
各种深度学习应用
如何使用预先训练好的模型获得最佳结果
本次免费课有12周的课程,每周至少需要3个小时才能完成。
课程网址:
https://software.intel.com/en-us/ai-academy/students/kits/deep-learning-501
课程3:TensorFlow基础
概要
TensorFlow是一个流行的机器学习框架和数据流编程的开源库。在本课程中,您将了解:
用TensorFlow构建模型的基础
重要的技术:如标准化、正则化和小批量处理(mini-batching)
“核化”以及如何将它们应用于卷积神经网络(CNN)
CNN的基本模板以及不同的可调参数
TFRecord, queues, coordinators
在本课程结束时,学生将对以下内容有一个明确的理解:
基础网络结构,卷积核,池化和多分类任务
如何将基础网络扩展到更复杂的网络
通过在现有网络上使用迁移学习来利用它们的优势
本次免费课有8周的课程,每周至少需要3个小时才能完成。
课程网址:
https://software.intel.com/en-us/ai-academy/students/kits/tensor-flow-501
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20